Skip to main content
Log in

GID1 expression is associated with ovule development of sexual and apomictic plants

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

BbrizGID1 is expressed in the nucellus of apomictic Brachiaria brizantha, previous to aposporous initial differentiation. AtGID1a overexpression triggers differentiation of Arabidopsis thaliana MMC-like cells, suggesting its involvement in ovule development.

Abstract

GIBBERELLIN-INSENSITIVE DWARF1 (GID1) is a gibberellin receptor previously identified in plants and associated with reproductive development, including ovule formation. In this work, we characterized the Brachiaria brizantha GID1 gene (BbrizGID1). BbrizGID1 showed up to 92% similarity to GID1-like gibberellin receptors of other plants of the Poaceae family and around 58% to GID1-like gibberellin receptors of Arabidopsis thaliana. BbrizGID1 was more expressed in ovaries at megasporogenesis than in ovaries at megagametogenesis of both sexual and apomictic plants. In ovules, BbrizGID1 transcripts were detected in the megaspore mother cell (MMC) of sexual and apomictic B. brizantha. Only in the apomictic plants, expression was also observed in the surrounding nucellar cells, a region in which aposporous initial cells differentiate to form the aposporic embryo sac. AtGID1a ectopic expression in Arabidopsis determines the formation of MMC-like cells in the nucellus, close to the MMC, that did not own MMC identity. Our results suggest that GID1 might be involved in the proper differentiation of a single MMC during ovule development and provide valuable information on the role of GID1 in sexual and apomictic reproduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers E, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acid Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alves ER, Carneiro VTC, Dusi DMA (2007) In situ localization of three cDNA sequences associated with the later stages of aposporic embryo sac development of Brachiaria brizantha. Protoplasma 231:161–171

    Article  CAS  PubMed  Google Scholar 

  • Araujo ACG, Mukhambetzhanov S, Pozzobon MT, Santana EF, Carneiro VTC (2000) Female gametophyte development in apomictic and sexual Brachiaria brizantha (Poaceae). Revue Cytol Biol Vég Le Bot 23:13–26

    Google Scholar 

  • Araujo ACG, Falcão R, Carneiro VTC (2007) Seed abortion in the sexual counterpart of Brachiaria brizantha apomicts (Poaceae). Sex Plant Reprod 20:109–121

    Article  Google Scholar 

  • Bartrina I, Otto E, Strnad M, Werner T, Schmülling T (2011) Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. Plant Cell 23:69–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benfey PN, Ren L, Chua N (1990) Tissue-specific expression from CaMV 35S enhancer subdomains in early stages of plant development. EMBO J 9:1677–1684

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brambilla V, Kater M, Colombo L (2008) Ovule integument identity determination in Arabidopsis. Plant Signal Behav 3:246–247

    Article  PubMed  PubMed Central  Google Scholar 

  • Carneiro VTC, Dusi DMA, Ortiz JPA (2006) Apomixis: occurrence, applications and improvements. In: Silva JAT (ed) Floriculture, ornamental and plant biotechnology: advances and tropical issues, vol 01. Global Science Books, Ikenobe, pp 564–570

    Google Scholar 

  • Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG et al (2003) Multiple sequence alignment with the clustal series of programs. Nucleic Acids Res 31:3497–3500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Cucinotta M, Colombo L, Roig-Villanova I (2014) Ovule development, a new model for lateral organ formation. Front Plant Sci 5:1–12

    Article  Google Scholar 

  • Davière J-M, Achard P (2013) Gibberellin signaling in plants. Development 140:1147–1151

    Article  PubMed  Google Scholar 

  • Dellaporta SL, Wood J, Hicks BJ (1983) A plant DNA minpreparation: version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • Dusi DMA, Willemse MTM (1999) Apomixis in Brachiaria decumbens Stapf.: gametophytic development and reproductive calendar. Acta Biol Cracov Ser Bot 41:151–162

    Google Scholar 

  • Gallego-Giraldo C, Hu J, Urbez C, Gomez MD, Sun TP, Perez-Amador MA (2014) Role of the gibberellin receptors GID1 during fruit-set in Arabidopsis. Plant J 79:1020–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez MD, Ventimilla D, Sacristan R, Perez-Amador MA (2016) Gibberellins regulate ovule integument development by interfering with the transcription factor ATS. Plant Physiol 172:2403–2415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths J, Murase K, Rieu I, Zentella R, Zhang Z-L, Powers SJ et al (2006) Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell 18:3399–3414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grossniklaus U, Schneitz K (1998) The molecular and genetic basis of ovule and megagametophyte development. Cell Dev Biol 9:227–238

    Article  CAS  Google Scholar 

  • Gupta R, Chakrabarty SK (2013) Gibberellic acid in plant: still a mystery unresolved. Plant Signal Behav 8:9

    Article  Google Scholar 

  • Hartweck LM, Olszewski NE (2006) Rice GIBBERELLIN INSENSITIVE DWARF1 is a gibberellin receptor that illuminates and raises questions about GA signaling. Plant Cell 18:278–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kooiker M, Airoldi CA, Losa A, Manzotti PS, Finzi L, Kater MM (2005) BASIC PENTACYSTEINE1, a GA binding protein that induces conformational changes in the regulatory region of the homeotic Arabidopsis gene SEEDSTICK. Plant Cell 17:722–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leblanc O, Armstead I, Pessino S, Ortiz JPA, Evans C, do Valle C et al (1997) Non-radioactive mRNA fingerprinting to visualise gene expression in mature ovaries of Brachiaria hybrids derived from B. brizantha, an apomictic tropical forage. Plant Sci 126:49–58

    Article  CAS  Google Scholar 

  • Liljegren SJ, Ditta GS, Eshed Y, Savidge B, Bowman JL, Yanofsky MF (2000) SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404:766–770

    Article  CAS  PubMed  Google Scholar 

  • Nakajima M, Shimada A, Takashi Y, Kim YC, Park SH, Ueguchi-Tanaka M et al (2006) Identification and characterization of Arabidopsis gibberellin receptors. Plant J 46:880–889

    Article  CAS  PubMed  Google Scholar 

  • Olmedo-Monfil V, Duran-Figueroa N, Arteaga-Vazquez M, Demesa-Arevalo E, Autran D, Grimanelli D et al (2010) Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature 464:629–633

    Article  Google Scholar 

  • Osterlund T (2001) Structure–function relationships of hormone-sensitive lipase. Eur J Biochem 1907:1899–1907

    Article  Google Scholar 

  • R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Rodrigues JCM, Cabral GB, Dusi DMA, Mello LV, Rigden DJ, Carneiro VTC (2003) Identification of differentially expressed cDNA sequences in ovaries of sexual and apomictic plants of Brachiaria brizantha. Plant Mol Biol 53:745–757

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Leal D, León-Martínez G, Abad-Vivero U, Vielle-Calzada J (2015) Natural variation in epigenetic pathways affects the specification of female gamete precursors in Arabidopsis. Plant Cell 27:1034–1045

    Article  PubMed  PubMed Central  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–385

    CAS  PubMed  Google Scholar 

  • Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Schneitz K, Hulskamp M, Pruitt RE (1995) Wild-type ovule development in Arabidopsis thaliana: a light microscope study of cleared whole-mount tissue. Plant J 7:731–749

    Article  Google Scholar 

  • Silveira ED, Alves-Ferreira M, Guimaraes LA, da Silva FR, Carneiro VTC (2009) Selection of reference genes for quantitative real-time PCR expression studies in the apomictic and sexual grass Brachiaria brizantha. BMC Plant Biol 9:84

    Article  PubMed  PubMed Central  Google Scholar 

  • Silveira ED, Guimaraes LA, Dusi DMA, da Silva FR, Martins NF, Costa MMC, Ferreira MA, Carnerio VTC (2012) Expressed sequence-tag analysis of ovaries of Brachiaria brizantha reveals genes associated with the early steps of embryo sac differentiation of apomictic plants. Plant Cell Rep 31:403–416

    Article  CAS  PubMed  Google Scholar 

  • Sun T (2010) Gibberellin-GID1-DELLA: a pivotal regulatory module for plant growth and development. Plant Physiol 154:567–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki H, Park S, Okubo K, Kitamura J, Ueguchi-Tanaka M, Iuchi S (2009) Differential expression and affinities of Arabidopsis gibberellin receptors can explain variation in phenotypes of multiple knock-out mutants. Plant J 60:48–55

    Article  CAS  PubMed  Google Scholar 

  • Tucker MR, Okada T, Hu Y, Scholefield A, Taylor JM, Koltunow AMG (2012) Somatic small RNA pathways promote the mitotic events of megagametogenesis during female reproductive development in Arabidopsis. Development 1404:1399–1404

    Article  Google Scholar 

  • Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M et al (2005) GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437:693–698

    Article  CAS  PubMed  Google Scholar 

  • Ueguchi-Tanaka M, Nakajima M, Motoyuki A, Matsuoka M (2007) Gibberellin receptor and its role in gibberellin signaling in plants. Annu Rev Plant Biol 58:183–198

    Article  CAS  PubMed  Google Scholar 

  • Voegele A, Linkies A, Müller K, Leubner-Metzger G (2011) Members of the gibberellin receptor gene family GID1 (GIBBERELLIN INSENSITIVE DWARF1) play distinct roles during Lepidium sativum and Arabidopsis thaliana seed germination. J Exp Bot 62:5131–5147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang W-C, Shi D-Q, Chen Y-H (2010) Female gametophyte development in flowering plants. Annu Rev Plant Biol 61:89–108

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dr. Perez-Amador who provided seeds of pAtGID1a:AtGID1a-GUS, pAtGID1b: AtGID1b-GUS and pAtGID1c:AtGID1c-GUS transgenic lines and Dr. Tucker who supplied seeds of pKNU:nlsYFP line. We also thank the assistance of Simona Masiero, Lilian Florentino and Júlio Rodrigues in the laboratory; Roberto Togawa and Priscila Grynberg in the bioinformatics analysis; and Joseane Padilha in the statistical analyses. This work was supported by the National Council for Scientific and Technological Development-CNPq (449636/2014-3-VTCC) and the Brazilian Agricultural Research Corporation-Embrapa (02140101400.00-VTCC). This work is part of Luciana Gomes Ferreira’s PhD thesis from Pós-Graduação em Biologia Molecular, University of Brasilia-UnB, Brazil, with fellowship from Coordination for the Improvement of Higher Level Personnel—University of Brasília, CAPES-UnB, which also provided a 1-year fellowship at Università degli Studi di Milano, Italy. Foundation for Research Support of the Federal District-FAPDF provided financial assistance for LGF’s participation in congresses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera Tavares de Campos Carneiro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Xian Sheng Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3200 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, L.G., de Alencar Dusi, D.M., Irsigler, A.S.T. et al. GID1 expression is associated with ovule development of sexual and apomictic plants. Plant Cell Rep 37, 293–306 (2018). https://doi.org/10.1007/s00299-017-2230-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-017-2230-0

Keywords

Navigation