Skip to main content
Log in

Knocking out of carotenoid catabolic genes in rice fails to boost carotenoid accumulation, but reveals a mutation in strigolactone biosynthesis

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Targeted mutations in five carotenoid catabolism genes failed to boost carotenoid accumulation in rice seeds, but produced dwarf and high tillering mutants when OsCCD7 gene was knocked out.

Abstract

Carotenoids play an important role in human diet as a source of vitamin A. Rice is a major staple food in Asia, but does not accumulate carotenoids in the endosperm because of the low carotenoid biosynthesis or the degradation in metabolism. In this study, the CRISPR/Cas9 system was investigated in the targeted knockout of five rice carotenoid catabolic genes (OsCYP97A4, OsDSM2, OsCCD4a, OsCCD4b and OsCCD7) and in an effort to increase β-carotene accumulation in rice endosperm. Transgenic plants that expressed OsNLSCas9 and sgRNAs were generated by Agrobacterium-mediated transformation. Various knockout mutations were identified at the T0 generation of the transgenic rice by TILLING and direct sequencing of the PCR products amplified from the target sites. Carotenoids were not accumulated in both mono-allelic and bi-allelic knockout mutations of the five genes. However, transgenic plants with homozygous or bi-allelic mutations to the OsCCD7 gene were extremely dwarfish with more tillers and lower seed setting than other transgenic or nontransgenic plants. This phenotype was similar to the previously reported ccd7 mutants, which are defective in the biosynthesis of strigolactone, a plant hormone that regulates branching in plants and tiller formation in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

6-BA:

6-Benzylaminopurine

ABA:

Abscisic acid

CCD:

Carotenoid cleavage dioxygenase

CRISPR:

Clustered regularly interspaced short palindromic repeats

Cas9:

CRISPR-associated protein 9

crRNA:

CRISPR RNA

DNA:

Deoxyribonucleic acid

EB:

Ethidium bromide

EDTA:

Ethylene diamine tetraacetic acid

HPTII:

Hygromycin phosphotransferase II gene

NAA:

1-Naphthaleneacetic acid

NCED:

Nine-cis-epoxy carotenoid dioxygenase

NLS:

Nulcear localization signal

PAM:

Protospacer-adjacent motif

PCR:

Polymerase chain reaction

PSY:

Phytoene synthase

RNA:

Ribonucleic acid

RT-PCR:

Reverse transcription PCR

SDS:

Sodium dodecyl sulfate

sgRNA:

Single guide RNA

SSR:

Site-specific recombination

TALEN:

Transcription activator-like effector nuclease

tracrRNA:

Trans-activating crRNA

WT:

Wild type

ZFN:

Zinc finger nuclease

References

  • Burkhardt PK, Beyer P, Wünn J, Klöti A, Armstrong GA, Schledz M, von Lintig J, Potrykus I (1997) Transgenic rice (Oryza sativa) endosperm expressing daffodil (Narcissus pseudonarcissus) phytoene synthase accumulates phytoene, a key intermediate of provitamin A biosynthesis. Plant J 11:1071–1078

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Wang J, Guo L, Xiao K (2008) Identification, characterization and expression analysis of transcription factor (CBF) genes in rice (Oryza sativa L.). Front Agric China 2:253–261

    Article  Google Scholar 

  • Cardoso C, Zhang Y, Jamil M, Hepworth J, Charnikhova T, Dimkpa SON, Meharg C, Wright MH, Liu J, Meng X, Wang Y, Li J, McCouch SR, Leyser O, Price AH, Bouwmeester HJ, Ruyter-Spira C (2014) Natural variation of rice strigolactone biosynthesis is associated with the deletion of two MAX1 orthologs. PNAS 111:2379–2384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du H, Wang NL, Cui F, Li XH, Xiao JH, Xiong LZ (2010) Characterization of the β-carotene hydroxylase gene dsm2 conferring drought and oxidative stress resistance by increasing xanthophylls and abscisic acid synthesis in rice. Plant Physiol 154:1304–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 19:1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer RA, Kohn GD (1966) The relationship of grain yield to vegetative growth and post-flowering leaf area in the wheat crop under conditions of limited soil moisture. Aust J Agric Res 17:281–295

    Article  Google Scholar 

  • Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31:822–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gautier H, Guichard S, Tchamitchian M (2001) Modulation of competition between fruits and leaves by flower pruning and water fogging, and consequences on tomato leaf and fruit growth. Ann Bot 88:645–652

    Article  Google Scholar 

  • Gonzalez-Jorge S, Ha SH, Magallanes-Lundback M, Gilliland LU, Zhou A, Lipka AE, Nguyen YN, Angelovici R, Lin H, Cepela J, Little H, Buell CR, Gore MA, Dellapenna D (2013) Carotenoid cleavage dioxygenase4 is a negative regulator of β-carotene content in Arabidopsis seeds. Plant Cell 25:4812–4826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hikosaka S, Sugiyama N (2003) Fruit growth patterns and abortion in multi-pistillate type cucumbers. J Hortic Sci Biotechnol 78:775–779

    Article  Google Scholar 

  • Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ilg A, Yu QJ, Schaub P, Beyer P, Al-Babili S (2010) Overexpression of the rice carotenoid cleavage dioxygenase 1 gene in Golden Rice endosperm suggests apocarotenoids as substrates in planta. Planta 232:691–699

    Article  CAS  PubMed  Google Scholar 

  • Jacobs TB, LaFayette PR, Schmitz JR, Parrott WA (2015) Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol 15:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Kulkarni KP, Vishwakarma C, Sahoo SP, Lima JM, Nath M, Dokku P, Gacche RN, Mohapatra T, Robin S, Sarla N, Seshashayee M, Singh AK, Singh K, Singh NK, Sharma RP (2014) A substitution mutation in OsCCD7 cosegregates with dwarf and increased tillering phenotype in rice. J Genet 93:389–401

    Article  CAS  PubMed  Google Scholar 

  • Lv MZ, Chao DY, Shan JX, Zhu MZ, Shi M, Gao JP, Lin HX (2012) Rice carotenoid b-ring hydroxylase CYP97A4 is involved in lutein biosynthesis. Plant Cell Physiol 53:987–1002

    Article  CAS  PubMed  Google Scholar 

  • Marcelis LFM, Heuvelink E, Baan Hofman-Eijer LR, Den Bakker J, Xue LB (2004) Flower and fruit abortion in sweet pepper in relation to source and sink strength. J Exp Bot 55:2261–2268

    Article  CAS  PubMed  Google Scholar 

  • Messing SA, Gabelli SB, Echeverria I, Vogel JT, Guan JC, Tan BC, Klee HJ, McCarty DR, Amzel LM (2010) Structural insights into maize viviparous14, a key enzyme in the biosynthesis of the phytohormone abscisic acid. Plant Cell 22:2970–2980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nisar N, Li L, Lu S, Khin NC, Pogson BJ (2015) Carotenoid metabolism in plants. Mol Plant 8:68–82

    Article  CAS  PubMed  Google Scholar 

  • Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR (2013) High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31:839–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaub P, Al-Babili S, Drake R, Beyer P (2005) Why is golden rice golden (yellow) instead of red? Plant Physiol 138:441–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Till B, Zerr T, Comai L, Henikoff S (2006) A protocol for TILLING and Ecotilling in plants and animals. Nat Protoc 1:2465–2477

    Article  CAS  PubMed  Google Scholar 

  • Umehara M, Hanada A, Magome H, Takeda-Kamiya N, Yamaguchi S (2010) Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice. Plant Cell Physiol 51:1118–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vallabhaneni R, Bradbury LMT, Wurtzel ET (2010) The carotenoid dioxygenase gene family in maize, sorghum, and rice. Arch Biochem Biophys 504:104–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel JT, Tan BC, McCarty DR, Klee HJ (2008) The carotenoid cleavage dioxygenase 1 enzyme has broad substrate specificity, cleaving multiple carotenoids at two different bond positions. J Biol Chem 283:11364–11373

    Article  CAS  PubMed  Google Scholar 

  • Wang ZP, Xing HL, Dong L, Zhang HY, Han CY, Wang XC, Chen QJ (2015) Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol 16:144

    Article  PubMed  PubMed Central  Google Scholar 

  • Welsch R, Wust F, Bar C, Al-Babili S, Beyer P (2008) A third phytoene synthase is devoted to abiotic stress-induced abscisic acid formation in rice and defines functional diversification of phytoene synthase genes. Plant Physiol 147:367–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305

    Article  CAS  PubMed  Google Scholar 

  • Yeum KJ, Russell RM (2002) Carotenoid bioavailability and bioconversion. Annu Rev Nutr 22:483–504

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, Mao Y, Yang L, Zhang H, Xu N, Zhu JK (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J 12:797–807

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Liu B, Weeks DP, Spalding MH, Yang B (2014) Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res 42:10903–10914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou J, Chen Z, Zhang S, Zhang W, Jiang G, Zhao X, Zhai W, Pan X, Zhu L (2005) Characterizations and fine mapping of a mutant gene for high tillering and dwarf in rice (Oryza sativa L.). Planta 222:604–612

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Project No. 31271422) to WY, Shenzhen Peacock Innovation Team Project (No. KQTD201101) to WY and JH, Guangdong Innovation Research Team Fund (2014ZT05S078) to WY, Natural Science Foundation of Guangdong Province (Project No. 2015A030310421) to LC, and Hong Kong RGC AoE Project AoE/M-05/12 to JH. We thank Chao Sun, Meiting Wu, Linlin Luo and Ye Jin for assistance in analyzing the off-target cleavage activity.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junxian He or Weichang Yu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Kan Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4889 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Chen, L., He, J. et al. Knocking out of carotenoid catabolic genes in rice fails to boost carotenoid accumulation, but reveals a mutation in strigolactone biosynthesis. Plant Cell Rep 36, 1533–1545 (2017). https://doi.org/10.1007/s00299-017-2172-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-017-2172-6

Keywords

Navigation