Skip to main content
Log in

Magnaporthe oryzae effectors MoHEG13 and MoHEG16 interfere with host infection and MoHEG13 counteracts cell death caused by Magnaporthe-NLPs in tobacco

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

An Erratum to this article was published on 25 March 2016

Abstract

Key message

Adapted pathogens are able to modulate cell responses of their hosts most likely due to the activity of secreted effector molecules thereby enabling colonisation by ostensible nonhost pathogens.

Abstract

It is postulated that host and nonhost pathogens of a given plant species differ in their repertoire of secreted effector molecules that are able to suppress plant resistance. We pursued the strategy of identifying novel effectors of Magnaporthe oryzae, the causal agent of blast disease, by comparing the infection process of closely related host vs. nonhost Magnaporthe species on barley (Hordeum vulgare L.). When both types of pathogen simultaneously attacked the same cell, the nonhost isolate became a successful pathogen possibly due to potent effectors secreted by the host isolate. Microarray studies led to a set of M. oryzae Hypothetical Effector Genes (MoHEGs) which were classified as Early- and LateMoHEGs according to the maximal transcript abundance during colonization of barley. Interestingly, orthologs of these MoHEGs from a nonhost pathogen were similarly regulated when investigated in a host situation, suggesting evolutionary conserved functions. Knockout mutants of MoHEG16 from the group of EarlyMoHEGs were less virulent on barley and microscopic studies revealed an attenuated transition from epidermal to mesophyll colonization. MoHEG13, a LateMoHEG, was shown to antagonize cell death induced by M. oryzae Necrosis-and ethylene-inducing-protein-1 (Nep1)-like proteins in Nicotiana benthamiana. MoHEG13 has a virulence function as a knockout mutant showed attenuated disease progression when inoculated on barley.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bailey BA (1995) Purification of a protein from culture filtrates of Fusarium oxysporum that induces ethylene and necrosis in leaves of Erythroxylum coca. Phytopathology 85:1250–1255

    Article  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol) 57:289–300

    Google Scholar 

  • Catlett NL, Lee DN, Yoder OC, Turgeon BG (2003) Split-marker recombination for efficient targeted deletion of fungal genes. Fungal Genet Newsl 50:9–11

    Google Scholar 

  • Cesari S, Thilliez G, Ribot C, Chalvon V, Michel C, Jauneau A, Rivas S, Alaux L, Kanzaki H, Okuyama Y, Morel J-B, Fournier E, Tharreau D, Terauchi R, Kroj T (2013) The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. Plant Cell 25:1463–1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Songkumarn P, Venu RC, Gowda M, Bellizzi M, Hu J, Liu W, Ebbole D, Meyers B, Mitchell T, Wang G-L (2013) Identification and characterization of in planta-expressed secreted effector proteins from Magnaporthe oryzae that induce cell death in rice. Mol Plant Microbe Interact 26:191–202

    Article  CAS  PubMed  Google Scholar 

  • Couch BC, Kohn LM (2002) A multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from M. grisea. Mycologia 94:683–693

    Article  CAS  PubMed  Google Scholar 

  • Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, Thon M, Kulkarni R, Xu J-R, Pan H, Read ND, Lee Y-H, Carbone I, Brown D, Oh YY, Donofrio N, Jeong JS, Soanes DM, Djonovic S, Kolomiets E, Rehmeyer C, Li W, Harding M, Kim S, Lebrun M-H, Bohnert H, Coughlan S, Butler J, Calvo S, Ma L-J, Nicol R, Purcell S, Nusbaum C, Galagan JE, Birren BW (2005) The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434:980–986

    Article  CAS  PubMed  Google Scholar 

  • Delventhal R, Falter C, Strugala R, Zellerhoff N, Schaffrath U (2014) Ectoparasitic growth of Magnaporthe on barley triggers expression of the putative barley wax biosynthesis gene CYP96B22 which is involved in penetration resistance. BMC Plant Biol 14:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Dudler R, Hertig C (1992) Structure of an mdr-like gene from Arabidopsis thaliana. Evolutionary implications. J Biol Chem 267:5882–5888

    CAS  PubMed  Google Scholar 

  • Eckert M, Maguire K, Urban M, Foster S, Fitt B, Lucas J, Hammond-Kosack K (2005) Agrobacterium tumefaciens-mediated transformation of Leptosphaeria spp. and Oculimacula spp. with the reef coral gene DsRed and the jellyfish gene gfp. FEMS Microbiol Lett 253:67–74

    Article  CAS  PubMed  Google Scholar 

  • Faivre-Rampant O, Thomas J, Allegre M, Morel JB, Tharreau D, Notteghem JL, Lebrun MH, Schaffrath U, Piffanelli P (2008) Characterization of the model system rice-Magnaporthe for the study of nonhost resistance in cereals. New Phytol 180:899–910

    Article  CAS  PubMed  Google Scholar 

  • Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194

    Article  CAS  PubMed  Google Scholar 

  • Gentleman R, Carey V, Bates D, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini A, Sawitzki G, Smith C, Smyth G, Tierney L, Yang J, Zhang J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80

    Article  PubMed  PubMed Central  Google Scholar 

  • Gijzen M, Nürnberger T (2006) Nep1-like proteins from plant pathogens: recruitment and diversification of the NPP1 domain across taxa. Phytochemistry 67:1800–1807

    Article  CAS  PubMed  Google Scholar 

  • Giraldo MC, Dagdas YF, Gupta YK, Mentlak TA, Yi M, Martinez-Rocha AL, Saitoh H, Terauchi R, Talbot NJ, Valent B (2013) Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae. Nat Commun 4:1996

    Article  PubMed  PubMed Central  Google Scholar 

  • Godfrey D, Bohlenius H, Pedersen C, Zhang Z, Emmersen J, Thordal-Christensen H (2010) Powdery mildew and rust fungal effector candidates share N-terminal Y/F/WxC-motif. BMC Genom 11:317

    Article  Google Scholar 

  • Gowda M, Venu R, Raghupathy M, Nobuta K, Li H, Wing R, Stahlberg E, Couglan S, Haudenschild C, Dean R, Nahm B-H, Meyers B, Wang G-L (2006) Deep and comparative analysis of the mycelium and appressorium transcriptomes of Magnaporthe grisea using MPSS, RL-SAGE, and oligoarray methods. BMC Genom 7:310

    Article  Google Scholar 

  • Heath MC (2000) Nonhost resistance and nonspecific plant defenses. Curr Opin Plant Biol 3:315–319

    Article  CAS  PubMed  Google Scholar 

  • Horton P, Park KJ, Obayashi T, Nakai K (2006) Protein subcellular localization prediction with WOLF PSORT. Ser Adv Bioinform 3:39–48

    CAS  Google Scholar 

  • Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:W585–W587

    Article  PubMed  PubMed Central  Google Scholar 

  • Hyon G-S, Nga N, Chuma I, Inoue Y, Asano H, Murata N, Kusaba M, Tosa Y (2012) Characterization of interactions between barley and various host-specific subgroups of Magnaporthe oryzae and M. grisea. J Gen Plant Pathol 78:237–246

    Article  Google Scholar 

  • Jarosch B, Kogel KH, Schaffrath U (1999) The ambivalence of the barley Mlo locus: mutations conferring resistance against powdery mildew (Blumeria graminis f. sp. hordei) enhance susceptibility to the rice blast fungus Magnaporthe grisea. Mol Plant Microbe Interact 12:508–514

    Article  CAS  Google Scholar 

  • Jarosch B, Collins NC, Zellerhoff N, Schaffrath U (2005) RAR1, ROR1, and the actin cytoskeleton contribute to basal resistance to Magnaporthe grisea in barley. Mol Plant Microbe Interact 18:397–404

    Article  CAS  PubMed  Google Scholar 

  • Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B (2000) Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J 19:4004–4014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Kankanala P, Czymmek K, Valent B (2007) Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus. Plant Cell 19:706–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanzaki H, Yoshida K, Saitoh H, Fujisaki K, Hirabuchi A, Alaux L, Fournier E, Tharreau D, Terauchi R (2012) Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions. Plant J 72:894–907

    Article  CAS  PubMed  Google Scholar 

  • Kershaw MJ, Talbot NJ (2009) Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease. Proc Natl Acad Sci 106:15967–15972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khang CH, Berruyer R, Giraldo MC, Kankanala P, Park S-Y, Czymmek K, Kang S, Valent B (2010) Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement. Plant Cell 22:1388–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleemann J, Rincon-Rivera LJ, Takahara H, Neumann U, van Themaat EVL, van der Does HC, Hacquard S, Stüber K, Will I, Schmalenbach W, Schmelzer E, O’Connell RJ (2012) Sequential delivery of host-induced virulence effectors by appressoria and intracellular hyphae of the phytopathogen Colletotrichum higginsianum. PLoS Pathog 8:e1002643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulkarni RD, Kelkar HS, Dean RA (2003) An eight-cysteine-containing CFEM domain unique to a group of fungal membrane proteins. Trends Biochem Sci 28:118–121

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni R, Thon M, Pan H, Dean R (2005) Novel G-protein-coupled receptor-like proteins in the plant pathogenic fungus Magnaporthe grisea. Genome Biol 6:R24

    Article  PubMed  PubMed Central  Google Scholar 

  • Kunoh H, Kuroda K, Hayashimoto A, Ishizaki H (1986) Induced susceptibility and enhanced resistance at the cellular level in barley coleoptiles. II. Timing and localization of induced susceptibility in a single coleoptile cell and its transfer to an adjacent cell. Can J Bot 64:889–895

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(−Delta Delta C) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Loehrer M, Botterweck J, Jahnke J, Mahlmann DM, Gaetgens J, Oldiges M, Horbach R, Deising H, Schaffrath U (2014) In vivo assessment by Mach-Zehnder double-beam interferometry of the invasive force exerted by the Asian soybean rust fungus (Phakopsora pachyrhizi). New Phytol 203:620–631

    Article  CAS  PubMed  Google Scholar 

  • Lyngkjær MF, Carver TLW (1999) Induced accessibility and inaccessibility to Blumeria graminis f. sp hordei in barley epidermal cells attacked by a compatible isolate. Physiol Mol Plant Pathol 55:151–162

    Article  Google Scholar 

  • Lyngkjær MF, Carver TLW, Zeyen RJ (2001) Virulent Blumeria graminis infection induces penetration susceptibility and suppresses race-specific hypersensitive resistance against avirulent attack in Mla1-barley. Physiol Mol Plant Pathol 59:243–256

    Article  Google Scholar 

  • Mathioni S, Beló A, Rizzo C, Dean R, Donofrio N (2011) Transcriptome profiling of the rice blast fungus during invasive plant infection and in vitro stresses. BMC Genomics 12:1–20

    Article  Google Scholar 

  • Mathioni SM, Patel N, Riddick B, Sweigard JA, Czymmek KJ, Caplan JL, Kunjeti SG, Kunjeti S, Raman V, Hillman BI, Kobayashi DY, Donofrio NM (2013) Transcriptomics of the rice blast fungus Magnaporthe oryzae in response to the bacterial antagonist Lysobacter enzymogenes reveals candidate fungal defense response genes. PLoS One 8:e76487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mentlak TA, Kombrink A, Shinya T, Ryder LS, Otomo I, Saitoh H, Terauchi R, Nishizawa Y, Shibuya N, Thomma BPHJ, Talbot NJ (2012) Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease. Plant Cell Online 24:322–335

    Article  CAS  Google Scholar 

  • Mosquera G, Giraldo MC, Khang CH, Coughlan S, Valent B (2009) Interaction transcriptome analysis identifies Magnaporthe oryzae BAS1-4 as biotrophy-associated secreted proteins in rice blast disease. Plant Cell 21:1273–1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motteram J, Küfner I, Deller S, Brunner F, Hammond-Kosack KE, Nürnberger T, Rudd JJ (2009) Molecular characterization and functional analysis of MgNLP, the sole NPP1 domain-containing protein, from the fungal wheat leaf pathogen Mycosphaerella graminicola. Mol Plant Microbe Interact 22:790–799

    Article  CAS  PubMed  Google Scholar 

  • Mysore KS, Ryu CM (2004) Nonhost resistance: How much do we know? Trends Plant Sci 9:97–104

    Article  CAS  PubMed  Google Scholar 

  • Nga NTT, Hau VTB, Tosa Y (2009) Identification of genes for resistance to a Digitaria isolate of Magnaporthe grisea in common wheat cultivars. Genome 52:801–809

    Article  CAS  PubMed  Google Scholar 

  • Nga NTT, Inoue Y, Chuma I, Hyon G-S, Okada K, Vy TTP, Kusaba M, Tosa Y (2012) Identification of a novel locus Rmo2 conditioning resistance in barley to host-specific subgroups of Magnaporthe oryzae. Phytopathology 102:674–682

    Article  PubMed  Google Scholar 

  • Odenbach D, Breth B, Thines E, Weber RWS, Anke H, Foster AJ (2007) The transcription factor Con7p is a central regulator of infection-related morphogenesis in the rice blast fungus Magnaporthe grisea. Mol Microbiol 64:293–307

    Article  CAS  PubMed  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  CAS  PubMed  Google Scholar 

  • Pritchard L, Birch PRJ (2014) The zigzag model of plant–microbe interactions: is it time to move on? Mol Plant Pathol 15:865–870

    Article  PubMed  Google Scholar 

  • Qutob D, Kemmerling B, Brunner F, Küfner I, Engelhardt S, Gust AA, Luberacki B, Seitz HU, Stahl D, Rauhut T, Glawischnig E, Schween G, Lacombe B, Watanabe N, Lam E, Schlichting R, Scheel D, Nau K, Dodt G, Hubert D, Gijzen M, Nürnberger T (2006) Phytotoxicity and innate immune responses induced by Nep1-like proteins. Plant Cell 18:3721–3744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R Development Core Team (2009). http://www.R-project.org. Accessed 15 July 2009

  • Rho HS, Kang S, Lee YH (2001) Agrobacterium tumefaciens-mediated transformation of the plant pathogenic fungus, Magnaporthe grisea. Mol Cells 12:407–411

    CAS  PubMed  Google Scholar 

  • Saitoh H, Fujisawa S, Mitsuoka C, Ito A, Hirabuchi A, Ikeda K, Irieda H, Yoshino K, Yoshida K, Matsumura H, Tosa Y, Win J, Kamoun S, Takano Y, Terauchi R (2012) Large-scale gene disruption in Magnaporthe oryzae identifies MC69, a secreted protein required for infection by monocot and dicot fungal pathogens. PLoS Pathog 8:e1002711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulze-Lefert P, Panstruga R (2011) A molecular evolutionary concept connecting nonhost resistance, pathogen host range, and pathogen speciation. Trends Plant Sci 16:117–125

    Article  CAS  PubMed  Google Scholar 

  • Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:1–25

    Google Scholar 

  • Sweigard JA, Carroll AM, Kang S, Farrall L, Chumley FG, Valent B (1995) Identification, cloning, and characterization of PWL2, a gene for host species specificity in the rice blast fungus. Plant Cell 7:1221–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talbot NJ (2003) On the trail of a cereal killer: investigating the biology of Magnaporthe grisea. Annu Rev Microbiol 57:177–202

    Article  CAS  PubMed  Google Scholar 

  • Talbot NJ, Ebbole DJ, Hamer JE (1993) Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell 5:1575–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thordal-Christensen H (2003) Fresh insights into processes of nonhost resistance. Curr Opin Plant Biol 6:351–357

    Article  CAS  PubMed  Google Scholar 

  • Tucker S, Orbach M (2007) Agrobacterium-mediated transformation to create an insertion library in Magnaporthe grisea. In: Ronald P (ed) Plant-pathogen interactions. Humana Press, New York, pp 57–68

    Google Scholar 

  • Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JAM (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35:W71–W74

    Article  PubMed  PubMed Central  Google Scholar 

  • Voegele RT, Schmid A (2011) RT real-time PCR-based quantification of Uromyces fabae in planta. FEMS Microbiol Lett 322:131–137

    Article  CAS  PubMed  Google Scholar 

  • Whisson SC, Boevink PC, Moleleki L, Avrova AO, Morales JG, Gilroy EM, Armstrong MR, Grouffaud S, van West P, Chapman S, Hein I, Toth IK, Pritchard L, Birch PRJ (2007) A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature 450:115–118

    Article  CAS  PubMed  Google Scholar 

  • Wilson RA, Talbot NJ (2009) Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nat Rev Microbiol 7:185–195

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Kou Y, Bao J, Li Y, Tang M, Zhu X, Ponaya A, Xiao G, Li J, Li C, Song M-Y, Cumagun CJR, Deng Q, Lu G, Jeon JS, Naqvi NI, Zhou B (2015) Comparative genomics identifies the Magnaporthe oryzae avirulence effector AvrPi9 that triggers Pi9-mediated blast resistance in rice. New Phytologist 206:1463–1475

    Article  CAS  PubMed  Google Scholar 

  • Yu J-H, Hamari Z, Han K-H, Seo J-A, Reyes-Domínguez Y, Scazzocchio C (2004) Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol 41:973–981

    Article  CAS  PubMed  Google Scholar 

  • Zellerhoff N, Jarosch B, Groenewald JZ, Crous PW, Schaffrath U (2006) Nonhost resistance of barley is successfully manifested against Magnaporthe grisea and a closely related Pennisetum-infecting lineage but is overcome by Magnaporthe oryzae. Mol Plant Microbe Interact 19:1014–1022

    Article  CAS  PubMed  Google Scholar 

  • Zellerhoff N, Himmelbach A, Dong W, Bieri S, Schaffrath U, Schweizer P (2010) Nonhost resistance of barley to different fungal pathogens is associated with largely distinct, quantitative transcriptional responses. Plant Physiol 152:2053–2066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Xu J-R (2014) Effectors and effector delivery in Magnaporthe oryzae. PLoS Pathog 10:e1003826

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Li D, Wang M, Liu J, Teng W, Cheng B, Huang Q, Wang M, Song W, Dong S, Zheng X, Zhang Z (2012) The Nicotiana benthamiana mitogen-activated protein kinase cascade and WRKY transcription factor participate in Nep1Mo-triggered plant responses. Mol Plant Microbe Interact 25:1639–1653

    Article  PubMed  Google Scholar 

  • Zipfel C (2014) Plant pattern-recognition receptors. Trends Immunol 35:345–351

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Nick Talbot, Lauren Ryder (both University of Exeter, UK) and Holger Deising, Ralf Horbach and Jan-Jorrit Krijger (all Martin-Luther-University Halle-Wittenberg, Germany) for introducing Valerie Mogga into Magnaporthe transformation and for sharing material. Didier Tharreau (CIRAD, Montpellier, France) is kindly acknowledged for providing different Magnaporthe isolates. Jochen Kleemann und Richard O’Connell (both MPIPZ, Cologne, Germany) helped with the N. benthamiana infiltration assay and shared material. We are also grateful to Andrew J. Foster (IBWF, Kaiserslautern, Germany) for providing the pCAMB-HPT vector and to Hiromasa Saitoh (Iwate Biotechnology Research Center, Kitakami, Japan) for sharing Δmoheg13 and wild type isolate INA72. Denise Weidenbach was funded in the framework of the Federal Ministry of Education and Research funding activity ‘Plant Biotechnology for the future, PLANT 2030’ within the project ‘BarleyFortress’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Schaffrath.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by E. Guiderdoni.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mogga, V., Delventhal, R., Weidenbach, D. et al. Magnaporthe oryzae effectors MoHEG13 and MoHEG16 interfere with host infection and MoHEG13 counteracts cell death caused by Magnaporthe-NLPs in tobacco. Plant Cell Rep 35, 1169–1185 (2016). https://doi.org/10.1007/s00299-016-1943-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-016-1943-9

Keywords

Navigation