Skip to main content
Log in

Arabidopsis thaliana defense response to the ochratoxin A-producing strain (Aspergillus ochraceus 3.4412)

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

OTA-producing strain Aspergillus ochraceus induc ed necrotic lesions, ROS accumulation and defense responses in Arabidopsis . Primary metabolic and defense-related proteins changed in proteomics. Ascorbate–glutathione cycle and voltage-dependent anion-selective channel proteins fluctuated.

Abstract

Mycotoxigenic fungi, as widespread contaminants by synthesizing mycotoxins in pre-/post-harvest infected plants and even stored commercial cereals, could usually induce plant–fungi defense responses. Notably, ochratoxin A (OTA) is a nephrotoxic, hepatotoxic, teratogenic, immunotoxic and phytotoxic mycotoxin. Herein, defense responses of model system Arabidopsis thaliana detached leaves to infection of Aspergillus ochraceus 3.4412, an OTA high-producing strain, were studied from physiological, proteomic and transcriptional perspectives. During the first 72 h after inoculation (hai), the newly formed hypersensitive responses-like lesions, decreased chlorophyll content, accumulated reactive oxygen species and upregulated defense genes expressions indicated the defense response was induced in the leaves with the possible earlier motivated jasmonic acid/ethylene signaling pathways and the later salicylic acid-related pathway. Moreover, proteomics using two-dimensional gel electrophoresis 72 hai showed 16 spots with significantly changed abundance and 13 spots corresponding to 12 unique proteins were successfully identified by MALDI-TOF/TOF MS/MS. Of these, six proteins were involved in basic metabolism and four in defense-related processes, which included glutathione-S-transferase F7, voltage-dependent anion-selective channel protein 3 (VDAC-3), osmotin-like protein OSM34 and blue copper-binding protein. Verified from proteomic and/or transcriptional perspectives, it is concluded that the primary metabolic pathways were suppressed with the ascorbate–glutathione cycle fluctuated in response to A. ochraceus and the modulation of VDACs suggested the possibility of structural damage and dysfunction of mitochondria in the process. Taken together, these findings exhibited a dynamic overview of the defense responses of A. thaliana to A. ochraceus and provided a better insight into the pathogen-resistance mechanisms in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidases

ASC:

Ascorbate

BCB protein:

Blue copper-binding protein

CSP41-a:

Chloroplast stem-loop binding protein of 41 kDa a

DAB:

3,3-Diaminobenzidine

DHAR:

Dehydroascorbate reductase

EIN:

Ethylene insensitive

ERF:

Ethylene-response factor

ET:

Ethylene

GADPH:

Glyceraldehydes-3-phosphate dehydrogenase

GDH:

Glutamate dehydrogenase

GR:

Glutathione reductase

GSH:

Reduced glutathione

GST:

Glutathione-S-transferase

Hai:

Hours after inoculation

HR:

Hypersensitive responses

H2DCFDA:

Dichlorodihydrofluorescein diacetate

H2O2 :

Hydrogen peroxide

IDH-I:

Isocitrate dehydrogenase [NAD] regulatory subunit 1

IEF:

Isoelectric focusing

JA:

Jasmonic acid

MDHAR:

Monodehydroascorbate reductase

NBT:

Nitroblue tetrazolium

OTA:

Ochratoxin A

OSM:

Osmotin-like protein

O2 :

Superoxide anion radical

PDF:

Plant defensin

ROS:

Reactive oxygen species

PR:

Pathogenesis-related

RT-PCR:

Real-time polymerase chain reaction

SA:

Salicylic acid

SGAT:

Serine-glyoxylate aminotransferase

TCA cycle:

Tricarboxylic acid cycle

VDAC-3:

Voltage-dependent anion-selective channel protein 3

2-DE:

Two-dimensional electrophoresis

References

  • Anderson J, Rowan K (1965) Activity of peptidase in tobacco-leaf tissue in relation to senescence. Biochem J 97:741–746

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bavaresco L, Vezzulli S, Battilani P, Giorni P, Pietri A, Bertuzzi T (2003) Effect of ochratoxin A-producing Aspergilli on stilbenic phytoalexin synthesis in grapes. J Agric Food Chem 51:6151–6157

    Article  CAS  PubMed  Google Scholar 

  • Berrocal-Lobo M, Molina A (2004) Ethylene response factor 1 mediates Arabidopsis resistance to the soilborne fungus Fusarium oxysporum. Mol Plant Microbe Interact 17:763–770

    Article  CAS  PubMed  Google Scholar 

  • Berrocal-Lobo M, Molina A (2008) Arabidopsis defense response against Fusarium oxysporum. Trends Plant Sci 13:145–150

    Article  CAS  PubMed  Google Scholar 

  • Bollenbach TJ, Sharwood RE, Gutierrez R, Lerbs-Mache S, Stern DB (2009) The RNA-binding proteins CSP41a and CSP41b may regulate transcription and translation of chloroplast-encoded RNAs in Arabidopsis. Plant Mol Biol 69:541–552

    Article  CAS  PubMed  Google Scholar 

  • Bolton MD (2009) Primary metabolism and plant defense-fuel for the fire. Mol Plant Microbe Interact 22:487–497

    Article  CAS  PubMed  Google Scholar 

  • Bowling SA, Clarke JD, Liu Y, Klessig DF, Dong X (1997) The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. Plant Cell 9:1573–1584

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ellinger D, Naumann M, Falter C, Zwikowics C, Jamrow T, Manisseri C, Somerville SC, Voigt CA (2013) Elevated early callose deposition results in complete penetration resistance to powdery mildew in Arabidopsis. Plant Physiol 161:1433–1444

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fang X, Chen W, Xin Y, Zhang H, Yan C, Yu H, Liu H, Xiao W, Wang S, Zheng G, Liu H, Jin L, Ma H, Ruan S (2012) Proteomic analysis of strawberry leaves infected with Colletotrichum fragariae. J Proteomics 75:4074–4090

    Article  CAS  PubMed  Google Scholar 

  • Fernie AR, Carrari F, Sweetlove LJ (2004) Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Curr Opin Plant Biol 7:254–261

    Article  CAS  PubMed  Google Scholar 

  • Ferrari S, Galletti R, Denoux C, De Lorenzo G, Ausubel FM, Dewdney J (2007) Resistance to Botrytis cinerea induced in Arabidopsis by elicitors is independent of salicylic acid, ethylene, or jasmonate signaling but requires PHYTOALEXIN DEFICIENT3. Plant Physiol 144:367–379

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Forde BG, Lea PJ (2007) Glutamate in plants: metabolism, regulation, and signalling. J Exp Bot 58:2339–2358

    Article  CAS  PubMed  Google Scholar 

  • Galletti R, Denoux C, Gambetta S, Dewdney J, Ausubel FM, De Lorenzo G, Ferrari S (2008) The AtrbohD-mediated oxidative burst elicited by oligogalacturonides in Arabidopsis is dispensable for the activation of defense responses effective against Botrytis cinerea. Plant Physiol 148:1695–1706

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  CAS  PubMed  Google Scholar 

  • Govrin EM, Levine A (2002) Infection of Arabidopsis with a necrotrophic pathogen, Botrytis cinerea, elicits various defense responses but does not induce systemic acquired resistance (SAR). Plant Mol Biol 48:267–276

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Stotz HU (2007) Defense against Sclerotinia sclerotiorum in Arabidopsis is dependent on jasmonic acid, salicylic acid, and ethylene signaling. Mol Plant Microbe Interact 20:1384–1395

    Article  CAS  PubMed  Google Scholar 

  • Homble F, Krammer E-M, Prévost M (2012) Plant VDAC: facts and speculations. Biochimica et Biophysica Acta (BBA)-Biomembranes 1818:1486–1501

  • Hong JK, Jung HW, Lee BK, Lee SC, Lee YK, Hwang BK (2004) An osmotin-like protein gene, CAOSM1, from pepper: differential expression and in situ localization of its mRNA during pathogen infection and abiotic stress. Physiol Mol Plant Pathol 64:301–310

    Article  CAS  Google Scholar 

  • Inokuchi R, Ki Kuma, Miyata T, Okada M (2002) Nitrogen-assimilating enzymes in land plants and algae: phylogenic and physiological perspectives. Physiol Plant 116:1–11

    Article  CAS  PubMed  Google Scholar 

  • Jansen C, Korell M, Eckey C, Biedenkopf D, Kogel K-H (2005) Identification and transcriptional analysis of powdery mildew-induced barley genes. Plant Sci 168:373–380

    Article  CAS  Google Scholar 

  • Jiménez M, Mateo R (2001) Occurrence of toxigenic fungi and mycotoxins in agricultural commodities in Spain. Occurrence of toxigenic fungi and mycotoxins in plants, food and feeds in Europe, European Commission, COST action 835:173–190

    Google Scholar 

  • Kusano T, Tateda C, Berberich T, Takahashi Y (2009) Voltage-dependent anion channels: their roles in plant defense and cell death. Plant Cell Rep 28:1301–1308

    Article  CAS  PubMed  Google Scholar 

  • Łaźniewska J, Macioszek VK, Lawrence CB, Kononowicz AK (2010) Fight to the death: Arabidopsis thaliana defense response to fungal necrotrophic pathogens. Acta Physiol Plant 32:1–10

    Article  Google Scholar 

  • Logrieco A, Bottalico A, Mulé G, Moretti A, Perrone G (2003) Epidemiology of toxigenic fungi and their associated mycotoxins for some Mediterranean crops. Eur J Plant Pathol 109:645–667

    Article  CAS  Google Scholar 

  • Mahalingam R, Jambunathan N, Gunjan SK, Faustin E, Weng H, Ayoubi P (2006) Analysis of oxidative signalling induced by ozone in Arabidopsis thaliana. Plant, Cell Environ 29:1357–1371

    Article  CAS  Google Scholar 

  • McNicoll F, Drummelsmith J, Müller M, Madore É, Boilard N, Ouellette M, Papadopoulou B (2006) A combined proteomic and transcriptomic approach to the study of stage differentiation in Leishmania infantum. Proteomics 6:3567–3581

    Article  CAS  PubMed  Google Scholar 

  • Monteiro S, Barakat M, Piçarra-Pereira MA, Teixeira AR, Ferreira RB (2003) Osmotin and thaumatin from grape: a putative general defense mechanism against pathogenic fungi. Phytopathology 93:1505–1512

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee AK, Carp MJ, Zuchman R, Ziv T, Horwitz BA, Gepstein S (2010) Proteomics of the response of Arabidopsis thaliana to infection with Alternaria brassicicola. J Proteomics 73:709–720

    Article  CAS  PubMed  Google Scholar 

  • Peng XL, Xu WT, Wang Y, Huang KL, Liang ZH, Zhao WW, Luo YB (2010) Mycotoxin Ochratoxin A-induced cell death and changes in oxidative metabolism of Arabidopsis thaliana. Plant Cell Rep 29:153–161

    Article  PubMed  Google Scholar 

  • Quirino BF, Candido ES, Campos PF, Franco OL, Kruger RH (2010) Proteomic approaches to study plant-pathogen interactions. Phytochemistry 71:351–362

    Article  CAS  PubMed  Google Scholar 

  • Reverberi M, Punelli F, Scarpari M, Camera E, Zjalic S, Ricelli A, Fanelli C, Fabbri AA (2010) Lipoperoxidation affects ochratoxin A biosynthesis in Aspergillus ochraceus and its interaction with wheat seeds. Appl Microbiol Biotechnol 85:1935–1946

    Article  CAS  PubMed  Google Scholar 

  • Rizzo I, Vedoya G, Maurutto S, Haidukowski M, Varsavsky E (2004) Assessment of toxigenic fungi on Argentinean medicinal herbs. Microbiol Res 159:113–120

    Article  CAS  PubMed  Google Scholar 

  • Sanchis V, Marín S, Ramos A (2001) Occurrence of toxigenic fungi and related mycotoxins in Spain. Occurrence of Toxigenic Fungi and Mycotoxins in Plants, Food and Feeds in Europe, European Commission, COST Action 835:191–199

    Google Scholar 

  • Shoshan-Barmatz V, De Pinto V, Zweckstetter M, Raviv Z, Keinan N, Arbel N (2010) VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol Aspects Med 31:227–285

    Article  CAS  PubMed  Google Scholar 

  • Sieber P, Schorderet M, Ryser U, Buchala A, Kolattukudy P, Métraux J-P, Nawrath C (2000) Transgenic Arabidopsis plants expressing a fungal cutinase show alterations in the structure and properties of the cuticle and postgenital organ fusions. Plant Cell 12:721–737

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sinha R, Chattopadhyay S (2011) Changes in the leaf proteome profile of Mentha arvensis in response to Alternaria alternata infection. J Proteomics 74:327–336

    Article  CAS  PubMed  Google Scholar 

  • Stein E, Molitor A, Kogel K-H, Waller F (2008) Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires jasmonic acid signaling and the cytoplasmic function of NPR1. Plant Cell Physiol 49:1747–1751

    Article  CAS  PubMed  Google Scholar 

  • Stone B, Clarke A (1992) (1→3)-β-glucans in plant host-pathogen interactions. Chemistry and biology of (1→3)-β-glucans [by Stone, BA; Clarke, AE] 491–511

  • Takahashi Y, Tateda C (2013) The functions of voltage-dependent anion channels in plants. Apoptosis 18:917–924

    Article  CAS  PubMed  Google Scholar 

  • Taler D, Galperin M, Benjamin I, Cohen Y, Kenigsbuch D (2004) Plant eR genes that encode photorespiratory enzymes confer resistance against disease. Plant Cell 16:172–184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tateda C, Watanabe K, Kusano T, Takahashi Y (2011) Molecular and genetic characterization of the gene family encoding the voltage-dependent anion channel in Arabidopsis. J Exp Bot 62:4773–4785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Teixeira de Freitas CD, Sousa Nogueira FC, Vasconcelos IM, Abreu Oliveira JT, Domont GB, Ramos MV (2011) Osmotin purified from the latex of Calotropis procera: biochemical characterization, biological activity and role in plant defense. Plant Physiol Biochem 49:738–743

    Article  CAS  Google Scholar 

  • Tian BJ, Wang Y, Zhu YR, Lü XY, Huang K, Shao N, Beck CF (2006) Synthesis of the photorespiratory key enzyme serine: glyoxylate aminotransferase in C. reinhardtii is modulated by the light regime and cytokinin. Physiol Plant 127:571–582

    Article  CAS  Google Scholar 

  • Van der Merwe K, Steyn P, Fourie L, Scott DB, Theron J (1965) Ochratoxin A, a toxic metabolite produced by Aspergillus ochraceus Wilh. Nature 205:1112–1113

  • van Kan JA (2006) Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci 11:247–253

    Article  PubMed  Google Scholar 

  • van Wees SC, Chang HS, Zhu T, Glazebrook J (2003) Characterization of the early response of Arabidopsis to Alternaria brassicicola infection using expression profiling. Plant Physiol 132:606–617

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang Y, Meng Y, Zhang M, Tong X, Wang Q, Sun Y, Quan J, Govers F, Shan W (2011a) Infection of Arabidopsis thaliana by Phytophthora parasitica and identification of variation in host specificity. Mol Plant Pathol 12:187–201

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Peng X, Xu W, Luo Y, Zhao W, Hao J, Liang Z, Zhang Y, Huang K (2011b) Transcript and protein profiling analysis of OTA-induced cell death reveals the regulation of the toxicity response process in Arabidopsis thaliana. J Exp Bot 63:2171–2187

  • Wang Y, Hao J, Zhao W, Yang Z, Wu W, Zhang Y, Xu W, Luo Y, Huang K (2013) Comparative proteomics and physiological characterization of Arabidopsis thaliana seedlings in responses to Ochratoxin A. Plant Mol Bio 1–17

  • Watanabe N, Lam E (2006) Arabidopsis Bax inhibitor-1 functions as an attenuator of biotic and abiotic types of cell death. Plant J 45:884–894

    Article  CAS  PubMed  Google Scholar 

  • Wingler A, Lea PJ, Quick WP, Leegood RC (2000) Photorespiration: metabolic pathways and their role in stress protection. Philos Trans R Soc Lond B Biol Sci 355:1517–1529

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang J, Schuster G, Stern DB (1996) CSP41, a sequence-specific chloroplast mRNA binding protein, is an endoribonuclease. Plant Cell Online 8:1409–1420

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank all of the members of Wentao Xu’s laboratory who contributed to the project, the mass spectrometry support from the Beijing Proteome Research Center and the support projects from National Key Technology R&D Program (2012BAK08B04-01).

Conflict of interest

There are no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhihong Liang or Wentao Xu.

Additional information

Communicated by Jim Register.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, J., Wu, W., Wang, Y. et al. Arabidopsis thaliana defense response to the ochratoxin A-producing strain (Aspergillus ochraceus 3.4412). Plant Cell Rep 34, 705–719 (2015). https://doi.org/10.1007/s00299-014-1731-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-014-1731-3

Keywords

Navigation