Skip to main content
Log in

A fungal protein elicitor PevD1 induces Verticillium wilt resistance in cotton

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

We found that the elicitor PevD1 triggered innate immunity in cotton, which plays an important role in future cotton wilt disease control.

Abstract

Elicitors can induce defense responses in plants and improve pathogen resistance. PevD1 is a secreted protein from Verticillium dahliae and activates the hypersensitive response and systemic acquired resistance to tobacco mosaic virus in tobacco plants. To investigate the PevD1-induced disease resistance mechanisms in cotton (Gossypium hirsutum), we report that Escherichia coli expressing PevD1 enhanced cotton resistance and the defense response to the fungal pathogen V. dahliae. The results showed that recombinant PevD1 improved cotton resistance when infiltrated at a concentration as low as 4 μg ml−1, and the highest disease reduction was 38.16 % on the 15th day post V. dahliae inoculation. This protein was able to systemically induce hydrogen peroxide production, nitric oxide generation, lignin deposition, vessel reinforcement and defense enzymes, including phenylalanine ammonia-lyase, peroxidase, and polyphenol oxidase. PevD1 also enhanced the expression of three pathogenesis-related genes, namely, β-1,3-glucanase, chitinase, and cadinene synthase, and three key genes, PAL, C4H1, and 4CL, from the cotton defense phenylpropanoid metabolism pathway. Our results demonstrated that PevD1 acted as an effector in cotton and V. dahliae interactions and triggered innate immunity in cotton, resulting in the upregulation of defense-related genes, metabolic substance deposition and cell wall modifications. PevD1 is a candidate plant defense activator for cotton wilt disease control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adam AL, Pike S, Hoyos ME, Stone JM, Walker JC, Novacky A (1997) Rapid and transient activation of a myelin basic protein kinase in tobacco leaves treated with harpin from Erwinia amylovora. Plant Physiol 115:853–861

    CAS  PubMed Central  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Asai S, Ohta K, Yoshioka H (2008) MAPK signaling regulates nitric oxide and NADPH oxidase-dependent oxidative bursts in Nicotiana benthamiana. Plant Cell Online 20:1390–1406

    Google Scholar 

  • Bianchini GM, Stipanovic RD, Bell AA (1999) Induction of δ-cadinene synthase and sesquiterpenoid phytoalexins in cotton by Verticillium dahliae. J Agric Food Chem 47:4403–4406

    Article  CAS  PubMed  Google Scholar 

  • Cai Y, Xiaohong H, Mo J, Sun Q, Yang J, Liu J (2012) Molecular research and genetic engineering of resistance to Verticillium wilt in cotton: a review. Afr J Biotechnol 8:7363–7372

    Google Scholar 

  • Chen S, Dong H, Fan Y, Li W, Cohen Y (2006) Dry mycelium of Penicillium chrysogenum induces expression of pathogenesis-related protein genes and resistance against wilt diseases in Bt transgenic cotton. Biol Control 39:460–464

    Article  CAS  Google Scholar 

  • Chen M, Zeng H, Qiu D, Guo L, Yang X, Shi H, Zhou T, Zhao J (2012) Purification and characterization of a novel hypersensitive response-inducing elicitor from Magnaporthe oryzae that triggers defense response in rice. PLoS ONE 7:e37654

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

    Article  CAS  PubMed  Google Scholar 

  • Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    Article  CAS  PubMed  Google Scholar 

  • Davis D, Low P, Heinstein P (1998) Purification of a glycoprotein elicitor of phytoalexin formation from Verticillium dahliae. Physiol Mol Plant Pathol 52:259–273

    Article  CAS  Google Scholar 

  • De Wit PJGM, Mehrabi R, Van Den Burg HA, Stergiopoulos I (2009) Fungal effector proteins: past, present and future. Mol Plant Pathol 10:735–747

    Article  PubMed  Google Scholar 

  • Delledonne M, Zeier J, Marocco A, Lamb C (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci 98:13454–13459

    Article  CAS  PubMed  Google Scholar 

  • Denoux C, Galletti R, Mammarella N, Gopalan S, Werck D, De Lorenzo G, Ferrari S, Ausubel FM, Dewdney J (2008) Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings. Mol Plant 1:423–445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant–pathogen interactions. Nat Rev Genet 11:539–548

    Article  CAS  PubMed  Google Scholar 

  • Dubery IA, Slater V (1997) Induced defence responses in cotton leaf disks by elicitors from Verticillium dahliae. Phytochemistry 44:1429–1434

    Article  CAS  Google Scholar 

  • El-Zik KM (1985) Integrated control of Verticillium wilt of cotton. Plant Dis 69:1025–1032

    Article  Google Scholar 

  • Eudes A, Pollet B, Sibout R, Do CT, Séguin A, Lapierre C, Jouanin L (2006) Evidence for a role of AtCAD1 in lignification of elongating stems of Arabidopsis thaliana. Planta 225:23–39

    Article  CAS  PubMed  Google Scholar 

  • Ferrari S, Galletti R, Denoux C, De Lorenzo G, Ausubel FM, Dewdney J (2007) Resistance to Botrytis cinerea induced in Arabidopsis by elicitors is independent of salicylic acid, ethylene, or jasmonate signaling but requires PHYTOALEXIN DEFICIENT3. Plant Physiol 144:367–379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Galletti R, Denoux C, Gambetta S, Dewdney J, Ausubel FM, De Lorenzo G, Ferrari S (2008) The AtrbohD-mediated oxidative burst elicited by oligogalacturonides in Arabidopsis is dispensable for the activation of defense responses effective against Botrytis cinerea. Plant Physiol 148:1695–1706

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garcia-Brugger A, Lamotte O, Vandelle E, Bourque S, Lecourieux D, Poinssot B, Wendehenne D, Pugin A (2006) Early signaling events induced by elicitors of plant defenses. Mol Plant Microbe Interact 19:711–724

    Article  CAS  PubMed  Google Scholar 

  • Hall C, Heath R, Guest DI (2011) Rapid and intense accumulation of terpenoid phytoalexins in infected xylem tissues of cotton (Gossypium hirsutum) resistant to Fusarium oxysporum f. sp. vasinfectum. Physiol Mol Plant Pathol 76:182–188

    Article  CAS  Google Scholar 

  • Hano C, Addi M, Fliniaux O, Bensaddek L, Duverger E, Mesnard F, Lamblin F, Lainé E (2008) Molecular characterization of cell death induced by a compatible interaction between Fusarium oxysporum f. sp. linii and flax (Linum usitatissimum) cells. Plant Physiol Biochem 46:590–600

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Gu M, Lai Z, Fan B, Shi K, Zhou YH, Yu JQ, Chen Z (2010) Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol 153:1526–1538

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jian G, Sun W, Ma C (2001) A new method for identifying the Verticillium wilt-resistance: sprinkle the strain suspension on root in non-bottom plastic film bottle. Cotton Sci 13:67–69

    Google Scholar 

  • Katagiri F, Tsuda K (2010) Understanding the plant immune system. Mol Plant Microbe Interact 23:1531–1536

    Article  CAS  PubMed  Google Scholar 

  • Mace ME, Bell AA, Beckman CH (1981) Fungal wilt diseases of plants. Academic Press, Inc., New York

    Google Scholar 

  • Mao J, Liu Q, Yang X, Long C, Zhao M, Zeng H, Liu H, Yuan J, Qiu D (2010) Purification and expression of a protein elicitor from Alternaria tenuissima and elicitor-mediated defence responses in tobacco. Ann Appl Biol 156:411–420

    Article  CAS  Google Scholar 

  • Marjamaa K, Kukkola EM, Fagerstedt KV (2009) The role of xylem class III peroxidases in lignification. J Exp Bot 60:367–376

    Article  CAS  PubMed  Google Scholar 

  • Mc Fadden H, Chapple R, De Feyter R, Dennis E (2001) Expression of pathogenesis-related genes in cotton stems in response to infection by Verticillium dahliae. Physiol Mol Plant Pathol 58:119–131

    Article  CAS  Google Scholar 

  • Mueller W, Morgham A (1993) Ultrastructure of the vascular responses of cotton to Verticillium dahliae. Can J Bot 71:32–36

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signalling in plants. New Phytol 159:11–35

    Article  CAS  Google Scholar 

  • Qiu D, Mao J, Yang X, Zeng H (2009) Expression of an elicitor-encoding gene from Magnaporthe grisea enhances resistance against blast disease in transgenic rice. Plant Cell Rep 28:925–933

    Article  CAS  PubMed  Google Scholar 

  • Romeis T, Ludwig AA, Martin R, Jones JDG (2001) Calcium-dependent protein kinases play an essential role in a plant defence response. EMBO J 20:5556–5567

    Article  CAS  PubMed  Google Scholar 

  • Sal’kova E, Guseva N (1965) The role of pectolytic enzymes of the Verticillium dahliae fungus in the development of cotton wilt. Doklady Akademii Nauk SSSR 163:515

    PubMed  Google Scholar 

  • Shi LY, Feng J, Wang LM, Jian GL (1997) Physiological differentiation of Verticillium dahliae on cotton in northern china. Cotton Sci 9:273–280 (in Chinese)

    Google Scholar 

  • Silipo A, Erbs G, Shinya T, Dow JM, Parrilli M, Lanzetta R, Shibuya N, Newman M-A, Molinaro A (2010) Glyco-conjugates as elicitors or suppressors of plant innate immunity. Glycobiology 20:406–419

    Article  CAS  PubMed  Google Scholar 

  • Smit F, Dubery IA (1997) Cell wall reinforcement in cotton hypocotyls in response to a Verticillium dahliae elicitor. Phytochemistry 44:811–815

    Article  CAS  Google Scholar 

  • Sundar AR, Velazhahan R, Nagarathinam S, Vidhyasekaran P (2008) Induction of pathogenesis-related proteins in sugarcane leaves and cell-cultures by a glycoprotein elicitor isolated from Colletotrichum falcatum. Biol Plant 52:321–328

    Article  CAS  Google Scholar 

  • Temme N, Tudzynski P (2009) Does Botrytis cinerea ignore H2O2-induced oxidative stress during infection? Characterization of Botrytis activator protein 1. Mol Plant Microbe Interact 22:987–998

    Article  CAS  PubMed  Google Scholar 

  • Thomma BP, Nürnberger T, Joosten MH (2011) Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell Online 23:4–15

    Article  CAS  Google Scholar 

  • Wang JY, Cai Y, Gou JY, Mao YB, Xu YH, Jiang WH, Chen XY (2004) VdNEP, an elicitor from Verticillium dahliae, induces cotton plant wilting. Appl Environ Microbiol 70:4989–4995

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang B, Yang X, Zeng H, Liu H, Zhou T, Tan B, Yuan J, Guo L, Qiu D (2012) The purification and characterization of a novel hypersensitive-like response-inducing elicitor from Verticillium dahliae that induces resistance responses in tobacco. Appl Microbiol Biotechnol 93:191–201

    Article  PubMed  Google Scholar 

  • Wei ZM, Laby RJ, Zumoff CH, Bauer DW, He SY, Collmer A, Beer SV (1992) Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science (New York, NY) 257:85

    Article  CAS  Google Scholar 

  • Xu L, Zhu L, Tu L, Liu L, Yuan D, Jin L, Long L, Zhang X (2011) Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry. J Exp Bot 62:5607–5621

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Yang X, Qiu D, Guo L, Zeng H, Mao J, Gao Q (2011) PeaT1-induced systemic acquired resistance in tobacco follows salicylic acid-dependent pathway. Mol Biol Rep 38:2549–2556

    Article  CAS  PubMed  Google Scholar 

  • Zhen XH, Li YZ (2004) Ultrastructural changes and location of β-1, 3-glucanase in resistant and susceptible cotton callus cells in response to treatment with toxin of Verticillium dahliae and salicylic acid. J Plant Physiol 161:1367–1377

    Article  CAS  PubMed  Google Scholar 

  • Zhou XJ, Lu S, Xu YH, Wang JW, Chen XY (2002) A cotton cDNA (GaPR-10) encoding a pathogenesis-related 10 protein with in vitro ribonuclease activity. Plant Sci 162:629–636

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National High Technology Research and Development Program (“863” Program) of China (2011AA10A205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiufen Yang.

Additional information

Communicated by B. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bu, B., Qiu, D., Zeng, H. et al. A fungal protein elicitor PevD1 induces Verticillium wilt resistance in cotton. Plant Cell Rep 33, 461–470 (2014). https://doi.org/10.1007/s00299-013-1546-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-013-1546-7

Keywords

Navigation