Skip to main content
Log in

Virus-induced gene silencing for comparative functional studies in Gladiolus hybridus

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Virus-induced gene silencing (VIGS) system could be performed successfully in Gladiolus hybridus with vacuum infiltration of cormels and young plants.

Abstract

Functional analysis of genes in gladiolus has previously been impractical due to the lack of an efficient stable genetic transformation method. However, virus-induced gene silencing (VIGS) is effective in some plants which are difficult to transform through other methods. Although the Tobacco rattle virus (TRV)-based VIGS system has been developed and used for verifying gene functions in diverse plants, an appropriate TRV-VIGS approach for gladiolus has not been established yet. In this report we describe the first use of the TRV-VIGS system for gene silencing in gladiolus. Vacuum infiltration of cormels and young plants with the GhPDS-VIGS vector effectively down-regulated the PHYTOENE DESATURASE ortholog GhPDS gene and also resulted in various degrees of photobleaching in Gladiolus hybridus. The reduction in GhPDS expression was tested after TRV-based vector infection using real-time RT-PCR. In addition, the progress of TRV infection was detected by fluorescence visualization using a pTRV2: CP-GFP vector. In conclusion, the TRV-mediated VIGS described here will be an effective gene function analysis mechanism in gladiolus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • An G (1985) High efficiency transformation of cultured tobacco cells. Plant Physiol 79(2):568–570

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • An G, Watson BD, Chiang CC (1986) Transformation of tobacco, tomato, potato, and Arabidopsis thaliana using a binary Ti vector system. Plant Physiol 81(1):301–305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  • Baulcombe DC (1999) Fast forward genetics based on virus-induced gene silencing. Curr Opin Plant Biol 2(2):109–113

    Article  CAS  PubMed  Google Scholar 

  • Baulcombe DC, Chapman S, Cruz S (1995) Jellyfish green fluorescent protein as a reporter for virus infections. Plant J 7(6):1045–1053

    Article  CAS  PubMed  Google Scholar 

  • Bruun-Rasmussen M, Madsen CT, Jessing S, Albrechtsen M (2007) Stability of barley stripe mosaic virus-induced gene silencing in barley. Mol Plant Microbe Interact 20(11):1323–1331

    Article  CAS  PubMed  Google Scholar 

  • Burch-Smith TM, Anderson JC, Martin GB, Dinesh-Kumar SP (2004) Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant J 39(5):734–746

    Article  CAS  PubMed  Google Scholar 

  • Chen YY, Lin YM, Chao TC, Wang JF, Liu AC, Ho FI, Cheng CP (2009) Virus-induced gene silencing reveals the involvement of ethylene-, salicylic acid- and mitogen-activated protein kinase-related defense pathways in the resistance of tomato to bacterial wilt. Physiol Plant 136(3):324–335

    Article  CAS  PubMed  Google Scholar 

  • Conner A, Dommisse E (1992) Monocotyledonous plants as hosts for Agrobacterium. Int J Plant Sci 153(4):550–555

    Article  Google Scholar 

  • Cunningham F Jr, Gantt E (1998) Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Biol 49(1):557–583

    Article  CAS  Google Scholar 

  • Demircan T, Akkaya MS (2010) Virus induced gene silencing in Brachypodium distachyon, a model organism for cereals. Plant Cell, Tissue Organ Cult 100(1):91–96

    Article  Google Scholar 

  • Desfeux C, Clough SJ, Bent AF (2000) Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method. Plant Physiol 123(3):895–904

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Di Stilio VS, Kumar RA, Oddone AM, Tolkin TR, Salles P, McCarty K (2010) Virus-induced gene silencing as a tool for comparative functional studies in Thalictrum. PLoS ONE 5(8):e12064

    Article  PubMed Central  PubMed  Google Scholar 

  • Dinesh-Kumar S, Anandalakshmi R, Marathe R, Schiff M, Liu Y (2003) Virus-induced gene silencing. Methods Mol Biol 236:287–294

    CAS  PubMed  Google Scholar 

  • Faivre-Rampant O, Gilroy EM, Hrubikova K, Hein I, Millam S, Loake GJ, Birch P, Taylor M, Lacomme C (2004) Potato virus X-induced gene silencing in leaves and tubers of potato. Plant Physiol 134(4):1308–1316

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gould B, Kramer EM (2007) Virus-induced gene silencing as a tool for functional analyses in the emerging model plant Aquilegia (columbine, Ranunculaceae). Plant Methods 3(1):6

    Article  PubMed Central  PubMed  Google Scholar 

  • Grønlund M, Olsen A, Johansen EI, Jakobsen I (2010) Protocol: using virus-induced gene silencing to study the arbuscular mycorrhizal symbiosis in Pisum sativum. Plant Methods 6(1):28

    Article  PubMed Central  PubMed  Google Scholar 

  • Hidalgo O, Bartholmes C, Gleissberg S (2012) Virus-induced gene silencing (VIGS) in Cysticapnos vesicaria, a zygomorphic-flowered Papaveraceae (Ranunculales, basal eudicots). Ann Bot 109(5):911–920

    Article  CAS  PubMed  Google Scholar 

  • Hileman LC, Drea S, Martino G, Litt A, Irish VF (2005) Virus-induced gene silencing is an effective tool for assaying gene function in the basal eudicot species Papaver somniferum (opium poppy). Plant J 44(2):334–341

    Article  CAS  PubMed  Google Scholar 

  • Holzberg S, Brosio P, Gross C, Pogue GP (2002) Barley stripe mosaic virus-induced gene silencing in a monocot plant. Plant J 30(3):315–327

    Article  CAS  PubMed  Google Scholar 

  • Jiang CZ, Chen JC, Reid M (2011) RNAi and Plant Gene Function Analysis. In: Kodama H, Komamine A (eds) Virus-induced gene silencing in ornamental plants., Methods in Molecular BiologyHumana Press, New York, pp 81–96

    Google Scholar 

  • Jones ML, Barnard RT (2005) Chimerization of multiple antibody classes using splice overlap extension PCR. Biotechniques 38:181–182

    Article  CAS  PubMed  Google Scholar 

  • Jones L, Hamilton AJ, Voinnet O, Thomas CL, Maule AJ, Baulcombe DC (1999) RNA-DNA interactions and DNA methylation in post-transcriptional gene silencing. The Plant Cell Online 11(12):2291–2302

    CAS  Google Scholar 

  • Kamo K, Jordan R, Guaragna MA, Hsu H-t, Ueng P (2010) Resistance to Cucumber mosaic virus in gladiolus plants transformed with either a defective replicase or coat protein subgroup II gene from Cucumber mosaic virus. Plant Cell Rep 29(7):695–704

    Article  CAS  PubMed  Google Scholar 

  • Lacomme C, Hrubikova K (2003) Enhancement of virus-induced gene silencing through viral-based production of inverted-repeats. Plant J 34(4):543–553

    Article  CAS  PubMed  Google Scholar 

  • Lian QL, Xin HB, Zhong XH, Zhang ZY, Li XX, Yuan X, Han HJ, He XL, Yi MF (2011) Cloning, characterization and expression analysis of a 9-lipoxygenase gene in Gladiolus hybridus. Sci Hortic 130(2):468–475

    Article  CAS  Google Scholar 

  • Liu YL, Schiff M, Dinesh-Kumar S (2002a) Virus-induced gene silencing in tomato. Plant J 31(6):777–786

    Article  CAS  PubMed  Google Scholar 

  • Liu YL, Schiff M, Marathe R, Dinesh-Kumar S (2002b) Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J 30(4):415–429

    Article  CAS  PubMed  Google Scholar 

  • Liu HP, Fu DQ, Zhu BZ, Yan HX, Shen XY, Zuo JH, Zhu Y, Luo YB (2012) Virus-induced gene silencing in eggplant (Solanum melongena). J Integr Plant Biol 54(6):422–429

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Luo X, Yi J, Zhong XH, Lian QL, Khan MA, Cao X, Li XX, Gao MW, Wu J, Chen J (2012) Cloning, characterization and expression analysis of key genes involved in ABA metabolism in gladiolus cormels during storage. Sci Hortic 143:115–121

    Article  CAS  Google Scholar 

  • MacFarlane SA, Popovich AH (2000) Efficient expression of foreign proteins in roots from tobravirus vectors. Virology 267(1):29–35

    Article  CAS  PubMed  Google Scholar 

  • Padmanabhan M, Dinesh-Kumar SP (2009) Virus-induced gene silencing as a tool for delivery of dsRNA into plants. Cold Spring Harbor Protocols 2009 (2):pdb. prot5139

  • Quadrana L, Rodriguez MC, López M, Bermúdez L, Nunes-Nesi A, Fernie AR, Descalzo A, Asis R, Rossi M, Asurmendi S (2011) Coupling virus-induced gene silencing to exogenous green fluorescence protein expression provides a highly efficient system for functional genomics in Arabidopsis and across all stages of tomato fruit development. Plant Physiol 156(3):1278–1291

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ratcliff F, Martin-Hernandez AM, Baulcombe DC (2001) Technical advance: tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J 25(2):237–245

    Article  CAS  PubMed  Google Scholar 

  • Scofield SR, Nelson RS (2009) Resources for virus-induced gene silencing in the grasses. Plant Physiol 149(1):152–157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Senthil-Kumar M, Mysore KS (2011) New dimensions for VIGS in plant functional genomics. Trends Plant Sci 16(12):656–665

    Article  CAS  PubMed  Google Scholar 

  • Smith RH, Hood EE (1995) Agrobacterium tumefaciens transformation of monocotyledons. Crop Sci 35(2):301–309

    Article  Google Scholar 

  • Velásquez AC, Chakravarthy S, Martin GB (2009) Virus-induced gene silencing (VIGS) in Nicotiana benthamiana and tomato. J Vis Exp 28:1292

    PubMed  Google Scholar 

  • Visser R, Jacobsen E, Witholt B, Feenstra W (1989) Efficient transformation of potato (Solanum tuberosum L.) using a binary vector in Agrobacterium rhizogenes. Theor Appl Genet 78(4):594–600

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse PM, Wang M-B, Lough T (2001) Gene silencing as an adaptive defence against viruses. Nature 411(6839):834–842

    Article  CAS  PubMed  Google Scholar 

  • Wege S, Scholz A, Gleissberg S, Becker A (2007) Highly efficient virus-induced gene silencing (VIGS) in California poppy (Eschscholzia californica): an evaluation of VIGS as a strategy to obtain functional data from non-model plants. Ann Bot 100(3):641–649

    Article  PubMed  Google Scholar 

  • Yaegashi H, Yamatsuta T, Takahashi T, Li C, Isogai M, Kobori T, Ohki S, Yoshikawa N (2007) Characterization of virus-induced gene silencing in tobacco plants infected with apple latent spherical virus. Arch Virol 152(10):1839–1849

    Article  CAS  PubMed  Google Scholar 

  • Yamagishi N, Yoshikawa N (2009) Virus-induced gene silencing in soybean seeds and the emergence stage of soybean plants with Apple latent spherical virus vectors. Plant Mol Biol 71(1):15–24

    Article  CAS  PubMed  Google Scholar 

  • Yamagishi N, Yoshikawa N (2011) Virus-induced gene silencing of endogenous genes and promotion of flowering in soybean by Apple latent spherical virus-based vectors. Soybean-molecular aspects of breeding. InTech, Rijeka

    Google Scholar 

  • Yang L, Wang H, Liu J, Li L, Fan Y, Wang X, Song Y, Sun S, Wang L, Zhu X (2008) A simple and effective system for foreign gene expression in plants via root absorption of agrobacterial suspension. J Biotechnol 134(3):320–324

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Michael Reid and Dr. Cai-Zhong Jiang (University of California, Davis) for kindly offering pTRV1 and pTRV2 vectors. Our thanks also go to Charles Copeland (University of British Columbia) for helpful editing of this manuscript and to Lin Xi PhD (China Agricultural University) for helpful comments. This study has been supported by the Science and Technology Specific Project Foundation of Ministry of Agriculture, PR China (No. 200903020), National Natural Science Foundation of China (No. 31171991).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingfang Yi.

Additional information

Communicated by K. Kamo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure S1 PDS sequence similarity analysis. (a) Sequence comparison of the coding region of PDS amplified from Gladiolus hybridus. Gladiolus hybridus (GhPDS, KC344859), Nicotiana benthamiana (NbPDS, DQ469932), Crocus sativus (CsPDS, AY183118), Oryza sativa (OsPDS, AF049356), Narcissus tazetta var. chinensis cultivar yellow (NtPDS, JQ797377) and Lilium hybrid division I (LiPDS, AB445118) (b) Phylogenetic tree.

Supplementary material 1 (TIFF 2800 kb)

Supplementary material 2 (TIFF 1737 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, X., Yuan, X., Wu, Z. et al. Virus-induced gene silencing for comparative functional studies in Gladiolus hybridus . Plant Cell Rep 33, 301–312 (2014). https://doi.org/10.1007/s00299-013-1530-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-013-1530-2

Keywords

Navigation