Skip to main content
Log in

Hormonal signals involved in the regulation of cambial activity, xylogenesis and vessel patterning in trees

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The radial growth of plant stem is based on the development of cribro-vascular cambium tissues. It affects the transport efficiency of water, mineral nutrients and photoassimilates and, ultimately, also plant height. The rate of cambial cell divisions for the assembly of new xylem and phloem tissue primordia and the rate of differentiation of the primordia into mature tissues determine the amount of biomass produced and, in the case of woody species, the wood quality. These complex physiological processes proceed at a rate which depends on several factors, acting at various levels: growth regulators, resource availability and environmental factors. Several hormonal signals and, more recently, further regulatory molecules, have been shown to be involved in the induction and maintenance of cambium and the formation of secondary vascular tissues. The control of xylem cell patterning is of particular interest, because it determines the diameter of xylem vessels, which is central to the efficiency of water and nutrient transport from roots to leaves through the stem and may strongly influence the growth in height of the tree. Increasing scientific evidence have proved the role of other hormones in cambial cell activities and the study of the hormonal signals and their crosstalking in cambial cells may foster our understanding of the dynamics of xylogenesis and of the mechanism of vessel size control along the stem. In this article, the role of the hormonal signals involved in the control of cambium and xylem development in trees and their crosstalking are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agusti J, Herold S, Schmarz M, Sanchez P, Ljung K, Dun EA, Brewer PB, Beveridge CA, Sieberer T, Sehr EM, Greb T (2011) Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proc Natl Acad Sci USA 108:20242–20247

    Article  PubMed  CAS  Google Scholar 

  • Aloni R (1987) Differentiation of vascular tissues. Annu Rev Plant Physiol 38:179–204

    Article  Google Scholar 

  • Aloni R (2001) Foliar and axial aspects of vascular differentiation: hypotheses and evidence. J Plant Growth Regul 20:22–34

    Article  CAS  Google Scholar 

  • Aloni R, Zimmermann MH (1983) The control of vessel size and density along the plant axis—a new hypothesis. Differentiation 24:203–208

    Article  Google Scholar 

  • Andersson-Gunnerås S, Hellgrent JM, Björklund S et al (2003) Asymmetric expression of a poplar ACC oxidase controls ethylene production during gravitational induction of tension wood. Plant J 34:339–349

    Article  PubMed  Google Scholar 

  • Andersson-Gunnerås S, Mellerowicz EJ, Love J, Segerman B, Ohmiya Y, Coutinho PM, Nilsson P, Henrissat B, Moritz T, Sundberg B (2006) Biosynthesis of cellulose-enriched tension wood in Populus: global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis. Plant J 45:144–165

    Article  PubMed  CAS  Google Scholar 

  • Anfodillo T, Carraro V, Carrer M et al (2006) Convergent tapering of xylem conduits in different woody species. New Phytol 169:279–290

    Article  PubMed  Google Scholar 

  • Anfodillo T, Deslauriers A, Menardi R et al (2012) Widening of xylem conduits in a conifer tree depends on the longer time of cell expansion downwards along the stem. J Exp Bot 63:837–845

    Article  PubMed  CAS  Google Scholar 

  • Arend M, Fromm J (2007) Seasonal change in the drought response of wood cell development in poplar. Tree Physiol 27:985–992

    Article  PubMed  Google Scholar 

  • Bandurski RS, Schulze A, Dayanandan P et al (1984) Response to gravity of Zea mays seedlings. Time course of the response. Plant Physiol 74:284–288

    Article  PubMed  CAS  Google Scholar 

  • Baum SF, Aloni R, Peterson CA (1991) Role of cytokinin in vessel regeneration in wounded Coleus internodes. Ann Bot 67:543–548

    CAS  Google Scholar 

  • Becker P, Gribben RJ, Lim CM (2000) Tapered conduits can buffer hydraulic conductance from path-length effects. Tree Physiol 20:965–967

    Article  PubMed  CAS  Google Scholar 

  • Berta M, Giovannelli A, Sebastiani F et al (2010) Transcriptome changes in the cambial region of poplar (Populus alba L.) in response to water deficit. Plant Biol 12:341–354

    Article  PubMed  CAS  Google Scholar 

  • Bhalerao RP, Bennett MJ (2003) The case for morphogens in plants. Nat Cell Biol 5:939–943

    Article  PubMed  CAS  Google Scholar 

  • Biro RL, Hunt ER, Erner Y et al (1980) Thigmomorphogenesis: changes in cell division and elongation in the internodes of mechanically-perturbed or ethrel-treated bean plants. Ann Bot 45:655–664

    Google Scholar 

  • Björklund S, Antti H, Uddestrand I, Moritz T, Sundberg B (2007) Cross-talk between gibberellin and auxin in development of Populus wood: gibberellin stimulates polar auxin transport and has a common transcriptome with auxin. Plant J 52:499–511

    Article  PubMed  CAS  Google Scholar 

  • Blaudez D, Kohler A, Martin F et al (2003) Poplar metal tolerance protein 1 confers zinc tolerance and is an oligomeric vacuolar zinc transporter with an essential leucine zipper motif. Plant Cell 15:2911–2928

    Article  PubMed  CAS  Google Scholar 

  • Bogeat-Triboulot MB, Brosché M, Renaut J et al (2007) Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions. Plant Physiol 143:876–892

    Article  PubMed  CAS  Google Scholar 

  • Cano-Delgado A, Yin YH, Yu C et al (2004) BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development 131:5341–5351

    Article  PubMed  CAS  Google Scholar 

  • Carlsbecker A, Helariutta Y (2005) Phloem and xylem specification: pieces of the puzzle emerge. Curr Opin Plant Biol 8:512–517

    Article  PubMed  CAS  Google Scholar 

  • Clouse SD, Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Physiol 49:427–451

    CAS  Google Scholar 

  • Coomes DA, Jenkins KL, Cole LES (2007) Scaling of tree vascular transport systems along gradients of nutrient supply and altitude. Biol Lett 3:86–89

    Article  PubMed  Google Scholar 

  • Creelman RA, Mason HS, Bensen RJ et al (1990) Water deficit and abscisic acid cause differential inhibition of shoot versus root growth in soybean seedlings. Plant Physiol 92:205–214

    Article  PubMed  CAS  Google Scholar 

  • Davies WJ, Zhang J (1991) Root signals and the regulation of growth and development of plants in drying soil. Annu Rev Plant Physiol Plant Mol Biol 42:55–76

    Article  CAS  Google Scholar 

  • Dayan J, Schwarzkopf M, Avni A et al (2010) Enhancing plant growth and fiber production by silencing GA 2-oxidase. Plant Biotechnol J 8:425–435

    Article  PubMed  CAS  Google Scholar 

  • Demura T, Fukuda H (1994) Novel vascular cell-specific genes whose expression is regulated temporally and spatially during vascular system development. Plant Cell 6:967–981

    PubMed  CAS  Google Scholar 

  • Deslauriers A, Giovannelli A, Rossi S et al (2009) Intra-annual cambial activity and carbon availability in stem of poplar. Tree Physiol 29:1223–1235

    Article  PubMed  CAS  Google Scholar 

  • Digby J, Wareing PF (1966) The effect of applied growth hormones on cambial division and the differentiation of the cambial derivates. Ann Bot 30:539–548

    CAS  Google Scholar 

  • Druart N, Johansson A, Baba K et al (2007) Environmental and hormonal regulation of the activity-dormancy cycle in the cambial meristem involves stage-specific modulation of transcriptional and metabolic networks. Plant J 50:557–573

    Article  PubMed  CAS  Google Scholar 

  • Du S, Yamamoto F (2003) Ethylene evolution changes in the stems of Metasequoia glyptostroboides and Aesculus turbinata seedlings in relation to gravity-induced reaction wood formation. Trees Struct Funct 17:522–528

    Article  CAS  Google Scholar 

  • Dumbroff EB, Cohen DB, Webb DP (1979) Seasonal levels of abscisic acid in buds and stems of Acer saccharum. Physiol Plant 45:211–214

    Article  CAS  Google Scholar 

  • Enquist BJ (2003) Cope’s rule and the evolution of long-distance transport in vascular plants: allometric scaling, biomass partitioning and optimization. Plant Cell Environ 26:151–161

    Article  Google Scholar 

  • Eriksson ME, Israelsson M, Olsson O et al (2000) Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nat Biotechnol 18:784–788

    Article  PubMed  CAS  Google Scholar 

  • Escalante-Perez M, Lautner S, Nehls U et al (2009) Salt stress affects xylem differentiation of grey poplar (Populus × canescens). Planta 229:299–309

    Article  PubMed  CAS  Google Scholar 

  • Fisher K, Turner S (2007) PXY, a receptor-like kinase essential for maintaining polarity during plant vascular-tissue development. Curr Biol 17:1061–1066

    Article  PubMed  CAS  Google Scholar 

  • Foo E, Reid JB (2012) Strigolactones: new physiological roles for an ancient signal. J Plant Growth Regul. doi:10.1007/s0034401293046

    Google Scholar 

  • Fukuda H (1997) Tracheary element differentiation. Plant Cell 9:1147–1156

    Article  PubMed  CAS  Google Scholar 

  • Fukuda H, Komamine A (1980) Establishment of an experimental system for the study of tracheary element differentiation from single cells isolated from the mesophyll of Zinnia elegans. Plant Physiol 65:57–60

    Article  PubMed  CAS  Google Scholar 

  • Gimeno-Gilles C, Lelièvre E, Viau L et al (2009) ABA-mediated inhibition of germination is related to the inhibition of genes encoding cell-wall biosynthetic and architecture: modifying enzymes and structural proteins in Medicago truncatula embryo axis. Mol Plant 2:108–119

    Article  PubMed  CAS  Google Scholar 

  • Hellgren JM, Olofsson K, Sundberg B (2004) Patterns of auxin distribution during gravitational induction of reaction wood in poplar and pine. Plant Physiol 135:212–220

    Article  PubMed  CAS  Google Scholar 

  • Hirakawa Y, Shinohara H, Kondo Y, Inoue A, Nakanomyo I, Ogawa M, Sawa S, Ohashi-Ito K, Matsubayashi Y, Fukuda H (2008) Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system. Proc Natl Acad Sci USA 105:15208–15213

    Article  PubMed  CAS  Google Scholar 

  • Hirakawa Y, Kondo Y, Fukuda H (2010) TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis. Plant Cell 22:2618–2629

    Article  PubMed  CAS  Google Scholar 

  • Igarashi K, Kashiwagi K (2010) Modulation of cellular function by polyamines. Int J Biochem Cell Biol 42:39–51

    Article  PubMed  CAS  Google Scholar 

  • Inoue T, Higuchi M, Hashimoto Y et al (2001) Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 409:1060–1063

    Article  PubMed  CAS  Google Scholar 

  • Israelsson M, Sundberg B, Moritz T (2005) Tissue-specific localization of gibberellins and expression of gibberellin-biosynthetic and signaling genes in wood-forming tissues in aspen. Plant J 44:494–504

    Article  PubMed  CAS  Google Scholar 

  • Ito Y, Nakanomyo I, Motose H, Iwamoto K, Sawa S, Dohmae N, Fukuda H (2006) Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science 313:842–845

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki T, Shibaoka H (1991) Brassinosteroids act as regulators of tracheary-element differentiation in isolated Zinnia mesophyll-cells. Plant Cell Physiol 32:1007–1014

    CAS  Google Scholar 

  • Jenkins PA, Shepherd KR (1974) Seasonal changes in levels of indole-acetic acid and abscisic acid in stem tissues of Pinus radiata. N Z J Bot 4:511–519

    CAS  Google Scholar 

  • Jun JH, Fiume E, Fletcher JC (2008) The CLE family of plant polypeptide signaling molecules. Cell Mol Life Sci 65:743–755

    Article  PubMed  CAS  Google Scholar 

  • Kakehi J, Kuwashiro Y, Niitsu M, Takahashi T (2008) Thermospermine is required for stem elongation in Arabidopsis thaliana. Plant Cell Physiol 49:1342–1349

    Article  PubMed  CAS  Google Scholar 

  • Kakehi J, Kuwashiro Y, Motose H, Igarashi K, Takahashi T (2010) Norspermine substitutes for thermospermine in the control of stem elongation in Arabidopsis thaliana. FEBS Lett 584:3042–3046

    Article  PubMed  CAS  Google Scholar 

  • Kliewer WM, Bowen P, Benz M (1989) Influence of shoot orientation on growth and yield development in Cabernet Sauvignon. Am J Enol Vitic 40:259–263

    Google Scholar 

  • Knott JM, Römer P, Sumper M (2007) Putative spermine synthases from Thalassiosira pseudonana and Arabidopsis thaliana synthesize thermospermine rather than spermine. FEBS Lett 581:3081–3086

    Article  PubMed  CAS  Google Scholar 

  • Kondo Y, Hirakawa Y, Kieber JJ, Fukuda H (2011) CLE peptides can negatively regulate protoxylem vessel formation via cytokinin signaling. Plant Cell Physiol 52:37–48

    Article  PubMed  CAS  Google Scholar 

  • Lindoo SJ, Noodén LD (1978) Correlation of cytokinins and abscisic acid with monocarpic senescence in soybeans. Plant Cell Physiol 19:997–1006

    CAS  Google Scholar 

  • Lintunen A, Kalliokoski T (2010) The effect of tree architecture on conduit diameter and frequency from small distal roots to branch tips in Betula pendula, Picea abies and Pinus sylvestris. Tree Physiol 30:1433–1447

    Article  PubMed  Google Scholar 

  • Little CHA, Bonga JM (1974) Rest in the cambium of Abies balsamea. Can J Bot 52:1723–1730

    Article  Google Scholar 

  • Little CHA, Pharis RP (1995) Hormonal control of radial and longitudinal growth in the tree stem. In: Gardner BL (ed) Plant stems: physiology and functional morphology. Academic Press, San Diego, pp 281–319

    Google Scholar 

  • Little CHA, Savidge RA (1987) The role of plant growth regulators in forest tree cambial growth. Plant Growth Regul 6:137–169

    Article  CAS  Google Scholar 

  • Little CHA, Wareing PF (1981) Control of cambial activity and dormancy in Picea sitchensis by indol-3-yl acetic acid and abscisic acid. Can J Bot 59:1480–1493

    Article  CAS  Google Scholar 

  • Love J, Björklund S, Vahalab J et al (2009) Ethylene is an endogenous stimulator of cell division in the cambial meristem of Populus. Proc Natl Acad Sci USA 106:5984–5989

    Article  PubMed  CAS  Google Scholar 

  • Lovisolo C, Schubert A (2000) Downward shoot positioning affects water transport in field-grown grapevines. Vitis 39:49–53

    Google Scholar 

  • Lovisolo C, Schubert A, Sorce C (2002) Are xylem radial development and hydraulic conductivity in downwardly-growing grapevine shoots influenced by perturbed auxin metabolism? New Phytol 156:65–74

    Article  PubMed  CAS  Google Scholar 

  • Magnani F, Mencuccini M, Grace J (2000) Age-related decline in stand productivity: the role of structural acclimation under hydraulic constraints. Plant Cell Environ 23:251–263

    Article  Google Scholar 

  • Matsumoto-Kitano M, Kusumoto T, Tarkowski P et al (2008) Cytokinins are central regulators of cambial activity. Proc Natl Acad Sci USA 105:20027–20031

    Article  PubMed  CAS  Google Scholar 

  • Mauriat M, Moritz T (2009) Analyses of GA20ox- and GID1-over-expressing aspen suggest that gibberellins play two distinct roles in wood formation. Plant J 58:989–1003

    Article  PubMed  CAS  Google Scholar 

  • McDowell NG, Phillips N, Lunch C et al (2002a) An investigation of hydraulic limitation and compensation in large, old Douglas-fir trees. Tree Physiol 22:763–774

    Article  PubMed  CAS  Google Scholar 

  • McDowell NG, Barnard H, Bond BJ et al (2002b) The relationship between tree height and leaf area: sapwood area ratio. Oecologia 132:12–20

    Article  Google Scholar 

  • Mencuccini M, Martinez-Vilalta J, Vanderklein D et al (2005) Size-mediated ageing reduces vigour in trees. Ecol Lett 8:1183–1190

    Article  PubMed  CAS  Google Scholar 

  • Mencuccini M, Holtta T, Petit G et al (2007) Sanio’s laws revisited. Size-dependent changes in the xylem architecture of trees. Ecol Lett 10:1084–1093

    Article  PubMed  Google Scholar 

  • Midgley JJ (2003) Is bigger better in plants? The hydraulic costs of increasing size in trees. Trends Ecol Evol 18:5–6

    Article  Google Scholar 

  • Milioni D, Sado PE, Stacey NJ et al (2001) Differential expression of cell-wall-related genes during the formation of tracheary elements in the Zinnia mesophyll cell system. Plant Mol Biol 47:221–238

    Article  PubMed  CAS  Google Scholar 

  • Miller CO, Skoog F, Von Saltza MH et al (1955) A cell division factor from deoxyribonucleic acid. J Am Chem Soc 77:1392

    Article  CAS  Google Scholar 

  • Moyle R, Schrader J, Stenberg A et al (2002) Environmental and auxin regulation of wood formation involves members of the Aux/IAA gene family in hybrid Aspen. Plant J 31:675–685

    Article  PubMed  CAS  Google Scholar 

  • Nakamura A, Higuchi K, Goda H et al (2003) Brassinolide induces IAA5, IAA19, and DR5, a synthetic auxin response element in arabidopsis, implying a cross talk point of brassinosteroid and auxin signaling. Plant Physiol 133:1843–1853

    Article  PubMed  CAS  Google Scholar 

  • Nanjo T, Futamura N, Nishiguchi M et al (2004) Characterization of full-length enriched expressed sequence tags of stress-treated poplar leaves. Plant Cell Physiol 45:1738–1748

    Article  PubMed  Google Scholar 

  • Nieminen K, Immanen J, Laxell M et al (2008) Cytokinin signalling regulates cambial development in poplar. Proc Natl Acad Sci USA 105:20032–20037

    Article  PubMed  CAS  Google Scholar 

  • Nilsson J, Karlberg A, Antti H, Lopez-Vernaza M, Mellerowicz E, Perrot-Rechenmann C, Sandberg G, Bhalerao RP (2008) Dissecting the molecular basis of the regulation of wood formation by auxin in hybrid aspen. Plant Cell 20:843–855

    Article  PubMed  CAS  Google Scholar 

  • Nobel PS (2009) Physicochemical and environmental plant physiology, 4th edn. Elsevier, Oxford

    Google Scholar 

  • Ohyama K, Shinohara H, Ogawa-Ohnishi M, Matsubayashi Y (2009) A glycopeptide regulating stem cell fate in Arabidopsis thaliana. Nat Chem Biol 5:578–580

    Article  PubMed  CAS  Google Scholar 

  • Oribe Y, Funada R, Kubo T (2003) Relationships between cambial activity, cell differentiation and the localization of starch in storage tissues around the cambium in locally heated stems of Abies sachalinensis (Schmidt) Masters. Trees Struct Funct 17:185–192

    Google Scholar 

  • Oshima T (1979) A new polyamine, thermospermine, 1,12-diamino-4,8-diazadodecane, from an extreme thermophile. J Biol Chem 254:8720–8722

    PubMed  CAS  Google Scholar 

  • Pegg AE (1986) Recent advances in the biochemistry of polyamines in eukaryotes. Biochem J 234:249–262

    PubMed  CAS  Google Scholar 

  • Pesquet E, Tuominen H (2011) Ethylene stimulates tracheary element differentiation in Zinnia elegans cell cultures. New Phytol 190:138–149

    Article  CAS  Google Scholar 

  • Petit G, Anfodillo T (2009) Plant physiology in theory and practice: an analysis of the WBE model for vascular plants. J Theor Biol 259:1–4

    Article  PubMed  Google Scholar 

  • Petit G, Anfodillo T, Mencuccini M (2008) Tapering of xylem conduits and hydraulic limitations in sycamore (Acer pseudoplatanus) trees. New Phytol 177:653–664

    Article  PubMed  Google Scholar 

  • Petit G, Pfautsch S, Anfodillo T et al (2010) The challenge of tree height in Eucalyptus regnans: when xylem tapering overcomes hydraulic resistance. New Phytol 187:1146–1153

    Article  PubMed  Google Scholar 

  • Petit G, Anfodillo T, Carraro V et al (2011) Hydraulic constraints limit height growth in trees at high altitude. New Phytol 189:241–252

    Article  PubMed  Google Scholar 

  • Plomion C, Leprovost G, Sokes A (2001) Wood formation in trees. Plant Physiol 127:1513–1523

    Article  PubMed  CAS  Google Scholar 

  • Popko J, Hänsch R, Mendel RR et al (2010) The role of abscisic acid and auxin in the response of poplar to abiotic stress. Plant Biol 12:242–258

    Article  PubMed  CAS  Google Scholar 

  • Pothier D, Margolis HA, Waring RH (1989) Patterns of change of saturated sapwood permeability and sapwood conductance with stand development. Can J For Res 19:432–439

    Article  Google Scholar 

  • Prasad TK, Cline MG (1985) Shoot inversion-induced ethylene in Pharbitis nil induces the release of apical dominance by restricting shoot elongation. Plant Sci 38:163–172

    Article  PubMed  CAS  Google Scholar 

  • Ragni L, Nieminen K, Pacheco-Villalobos D et al (2011) Mobile gibberellin directly stimulates Arabidopsis hypocotyl xylem expansion. Plant Cell 23:1322–1336

    Article  PubMed  CAS  Google Scholar 

  • Ralph SG, Chun HJE, Cooper D (2008) Analysis of 4,664 high-quality sequence-finished poplar full-length cDNA clones and their utility for the discovery of genes responding to insect feeding. BMC Genomics 9:57

    Article  PubMed  CAS  Google Scholar 

  • Ren B, Liang Y, Deng Y, Chen Q, Zhang J, Yang X, Zuo J (2009) Genome-wide comparative analysis of type-A Arabidopsis response regulator genes by overexpression studies reveals their diverse roles and regulatory mechanisms in cytokinin signaling. Cell Res 19:1178–1190

    Article  PubMed  CAS  Google Scholar 

  • Ryan MG, Yoder BJ (1997) Hydraulic limits to tree height and tree growth. Bioscience 47:235–242

    Article  Google Scholar 

  • Sachs T (1981) The control of patterned differentiation of vascular tissues. Adv Bot Res 9:151–262

    Article  Google Scholar 

  • Sachs T (1991) Cell polarity and tissue patterning in plants. Development 91(Suppl):83–93

    Google Scholar 

  • Sachs T (2000) Integrating cellular and organismal aspects of vascular differentiation. Plant Cell Physiol 41:649–656

    Article  PubMed  CAS  Google Scholar 

  • Saks Y, Feigenbaum P, Aloni R (1984) Regulatory effect of cytokinin on secondary xylem fiber formation in an in vivo system. Plant Physiol 76:638–642

    Article  PubMed  CAS  Google Scholar 

  • Scarpella E, Meijer AH (2004) Pattern formation in the vascular system of monocot and dicot plant species. New Phytol 164:209–242

    Article  CAS  Google Scholar 

  • Schrader J, Nilsson J, Mellerowicz EJ et al (2004) A high-resolution transcript profile across the wood-forming meristem of poplar identifies potential regulators of cambial stem cell identity. Plant Cell 16:2278–2292

    Article  PubMed  CAS  Google Scholar 

  • Schubert A, Restagno M, Novello V et al (1995) Effects of shoot orientation on growth, net photosynthesis, and hydraulic conductivity of Vitis vinifera L. cv. Cortese. Am J Enol Vitic 46:324–328

    CAS  Google Scholar 

  • Schubert A, Lovisolo C, Peterlunger E (1999) Shoot orientation affects vessel size, shoot hydraulic conductivity and shoot growth rate in Vitis vinifera L. Plant Cell Environ 22:197–204

    Article  PubMed  CAS  Google Scholar 

  • Sieburth LE, Deyholos MK (2006) Vascular development: the long and winding road. Curr Opin Plant Biol 9:48–54

    Article  PubMed  CAS  Google Scholar 

  • Sorce C, Mariotti L, Lorenzi R et al (2007) Hormonal factors involved in the control of vigour of grafted peach (Prunus persica (L.) Batsch) trees and hybrid rootstocks. Adv Hortic Sci 21:68–74

    Google Scholar 

  • Sundberg B, Little CHA, Cui K et al (1991) Level of endogenous indole-3-acetic acid in the stem of Pinus sylvestris in relation to the seasonal variation of cambial activity. Plant Cell Environ 14:241–246

    Article  CAS  Google Scholar 

  • Sundberg B, Uggla C, Tuominen H (2000) Cambial growth and auxin gradients. In: Savidge RA, Barnett JR, Napir R (eds) Cell and molecular biology of wood formation. BIOS Scientific Publishers, Oxford, pp 169–188

    Google Scholar 

  • Tabor CW, Tabor H (1984) Polyamines. Annu Rev Biochem 53:749–790

    Article  PubMed  CAS  Google Scholar 

  • Takei K, Sakakibara H, Sugiyama T (2001) Identification of genes encoding adenylate isopentenyltransferase, a cytokinin biosynthesis enzyme, in Arabidopsis thaliana. J Biol Chem 276:26405–26410

    Article  PubMed  CAS  Google Scholar 

  • Tokunaga N, Uchimura N, Sato Y (2006) Involvement of gibberellin in tracheary element differentiation and lignification in Zinnia elegans xylogenic culture. Protoplasma 228:179–187

    Article  PubMed  CAS  Google Scholar 

  • Torrey G, Loomis RS (1967) Auxin–cytokinin control of secondary vascular tissue formation in isolated roots of Raphanus. Am J Bot 54:1098–1106

    Article  CAS  Google Scholar 

  • Tuominen H, Puech L, Fink S et al (1997) A radial concentration gradient of indole-3-acetic acid is related to secondary xylem development in hybrid aspen. Plant Physiol 115:577–585

    PubMed  CAS  Google Scholar 

  • Turner S, Gallois P, Brown D (2007) Tracheary element differentiation. Annu Rev Plant Biol 58:407–433

    Article  PubMed  CAS  Google Scholar 

  • Tyree MT (2003) The ascent of water. Nature 423:923

    Article  PubMed  CAS  Google Scholar 

  • Ueguchi C, Sato S, Kato T et al (2001) The AHK4 gene involved in the cytokinin-signaling pathway as a direct receptor molecule in Arabidopsis thaliana. Plant Cell Physiol 42:751–755

    Article  PubMed  CAS  Google Scholar 

  • Uggla C, Moritz T, Sandberg G et al (1996) Auxin as a positional signal in pattern formation in plants. Proc Natl Acad Sci USA 93:9282–9286

    Article  PubMed  CAS  Google Scholar 

  • Uggla C, Mellerowicz EJ, Sundberg B (1998) Indole-3-acetic acid controls cambial growth in Scots pine by positional signaling. Plant Physiol 117:113–121

    Article  PubMed  CAS  Google Scholar 

  • Uggla C, Magel E, Moritz T et al (2001) Function and dynamics of auxin and carbohydrates during earlywood/latewood transitions in Scots pine. Plant Physiol 125:2029–2039

    Article  PubMed  CAS  Google Scholar 

  • Vanderklein D, Martinez-Vilalta J, Lee S et al (2007) Plant size, not age, regulates growth and gas exchange in grafted Scots pine trees. Tree Physiol 27:71–79

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Little CH, Odén PC (1997) Control of longitudinal and cambial growth by gibberellins and indole-3-acetic acid in current-year shoots of Pinus sylvestris. Tree Physiol 17:715–721

    Article  PubMed  CAS  Google Scholar 

  • Wareing PF, Hanney CEA, Digby J (1964) The role of endogenous hormones in cambial activity and xylem differentiation. In: Zimmermann MH (ed) The formation of wood in forest trees. Academic Press, New York, pp 323–345

    Google Scholar 

  • West GB, Brown JH, Enquist BJ (1999) A general model for the structure and allometry of plant vascular systems. Nature 400:664–667

    Article  CAS  Google Scholar 

  • Whitford R, Fernandez A, De Groodt R, Ortega E, Hilson P (2008) Plant CLE peptides from two distinct functional classes synergistically induce division of vascular cells. Proc Natl Acad Sci USA 105:18625–18630

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto R, Demura T, Fukuda H (1997) Brassinosteroids induce entry into the final stage of tracheary element differentiation in cultured Zinnia cells. Plant Cell Physiol 38:980–983

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto R, Fujioka S, Demura T et al (2001) Brassinosteroid levels increase drastically prior to morphogenesis of tracheary elements. Plant Physiol 125:556–563

    Article  PubMed  CAS  Google Scholar 

  • Yoshida S, Kuriyama H, Fukuda H (2005) Inhibition of transdifferentiation into tracheary elements by polar auxin transport inhibitors through intracellular auxin depletion. Plant Cell Physiol 46:2019–2028

    Article  PubMed  CAS  Google Scholar 

  • Yoshimoto K, Noutoshi Y, Hayashi K, Shirasu K, Takahashi T, Motose H (2012) A chemical biology approach reveals an opposite action between thermospermine and auxin in xylem development in Arabidopsis thaliana. Plant Cell Physiol 53:635–645

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Schurr U, Davies WJ (1987) Control of stomatal behaviour by abscisic acid which apparently originates in the roots. J Exp Bot 38:1174–1181

    Article  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Sorce.

Additional information

Communicated by P. Kumar.

A contribution to the Special Issue: Plant Hormone Signaling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorce, C., Giovannelli, A., Sebastiani, L. et al. Hormonal signals involved in the regulation of cambial activity, xylogenesis and vessel patterning in trees. Plant Cell Rep 32, 885–898 (2013). https://doi.org/10.1007/s00299-013-1431-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-013-1431-4

Keywords

Navigation