Skip to main content
Log in

Expression of Brassica oleracea FtsZ1-1 and MinD alters chloroplast division in Nicotiana tabacum generating macro- and mini-chloroplasts

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

FtsZ1-1 and MinD plastid division-related genes were identified and cloned from Brassica oleracea var. botrytis. Transgenic tobacco plants expressing BoFtsZ1-1 or BoMinD exhibited cells with either fewer but abnormally large chloroplasts or more but smaller chloroplasts relative to wild-type tobacco plants. An abnormal chloroplast phenotype in guard cells was found in BoMinD transgenic tobacco plants but not in BoFtsZ1-1 transgenic tobacco plants. Transgenic tobacco plants bearing the macro-chloroplast phenotype had 10 to 20-fold increased levels of total FtsZ1-1 or MinD, whilst the transgenic tobacco plants bearing the mini-chloroplast phenotype had lower increased FtsZ1-1 or absence of detectable MinD. We also described for the first time, plastid transformation of macro-chloroplast bearing tobacco shoots with a gene cassette allowing for expression of green fluorescent protein (GFP). Homoplasmic plastid transformants from normal chloroplast and macro-chloroplast tobacco plants expressing GFP were obtained. Both types of transformants accumulated GFP at ~6% of total soluble protein, thus indicating that cells containing macro-chloroplasts can regenerate shoots in tissue culture and can stably integrate and express a foreign gene to similar levels as plant cells containing a normal chloroplast size and number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Arc :

Accumulation and replication of chloroplasts

CTAB:

Cetyl trimethylammonium bromide

EST:

Expressed sequence tag

MEGA:

Molecular evolutionary genetics analysis

MS:

Murashige and Skoog

rbcS:

Rubisco small sub-unit

TIGR:

The Institute for Genomic Research

References

  • Adams S, Maple J, Møller S (2008) Functional conservation of the MIN plastid division homologues of Chlamydomonas reinhardtii. Planta 227:1199–1211

    Article  PubMed  CAS  Google Scholar 

  • Austin J II, Webber A (2005) Photosynthesis in Arabidopsis thaliana mutants with reduced chloroplast number. Photosynth Res 85:373–384

    Article  CAS  Google Scholar 

  • Colletti KS, Tattersall EA, Pyke KA, Froelich JE, Stokes KD, Osteryoung KW (2000) A homologue of the bacterial cell division site-determining factor MinD mediates placement of the chloroplast division apparatus. Curr Biol 10:507–516

    Article  PubMed  CAS  Google Scholar 

  • De Boer PAJ, Crossley RE, Rothfield LI (1989) A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli. Cell 56:641–649

    Article  PubMed  Google Scholar 

  • De Cosa B, Moar W, Lee SB, Miller M, Daniell H (2001) Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol 19:71–74

    Article  PubMed  Google Scholar 

  • De Pater S, Caspers M, Kottenhagen M, Meima H, Ter Stege R, De Vetten N (2006) Manipulation of starch granule size distribution in potato tubers by modulation of plastid division. Plant Biotechnol J 4:123–134

    Article  PubMed  Google Scholar 

  • Dinkins R, Reddy S, Leng M, Collins G (2001) Overexpression of the Arabidopsis thaliana MinD1 gene alters chloroplast size and number in transgenic tobacco plants. Planta 214:180–188

    Article  PubMed  CAS  Google Scholar 

  • El-kafafi E-S, Karamoko M, Pignot-paintrand I, Grunwald D, Mandaron P, Lerbs-Mache S, Falconet D (2008) Developmentally regulated association of plastid division protein FtsZ1 with thylakoid membranes in Arabidopsis thaliana. Biochem J 409:87–94

    Article  CAS  Google Scholar 

  • El-Shami M, El-Kafafi S, Falconet D, Lerbs-Mache S (2002) Cell cycle-dependent modulation of FtsZ expression in synchronized tobacco BY2 cells. Mol Genet Genomics 267:254–261

    Article  PubMed  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8:978–984

    Article  PubMed  CAS  Google Scholar 

  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara MT, Nakamura A, Itoh R, Shimada Y, Yoshida S, Møller SG (2004) Chloroplast division site placement requires dimerization of the ARC11/AtMinD1 protein in Arabidopsis. J Cell Sci 117:2399–2410

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara MT, Hashimoto H, Kazama Y, Abe T, Yoshida S, Sato N, Itoh RD (2008) The assembly of the FtsZ ring at the mid-chloroplast division site depends on a balance between the activities of AtMinE1 and ARC11/AtMinD1. Plant Cell Physiol 49:345–361

    Article  PubMed  CAS  Google Scholar 

  • Gaikwad A, Babbarwal V, Pant V, Mukherjee SK (2000) Pea chloroplast FtsZ can form multimers and correct the thermosensitive defect of an Escherichia coli ftsZ mutant. Mol Gen Genet 263:213–221

    Article  PubMed  CAS  Google Scholar 

  • Gawel N, Jarret R (1991) A modified CTAB DNA extraction procedure for Musa and Ipomoea. Plant Mol Biol Rep 9:262–266

    Article  CAS  Google Scholar 

  • Glynn JM, Miyagishima S-y, Yoder DW, Osteryoung KW, Vitha S (2007) Chloroplast division. Traffic 8:451–461

    Article  PubMed  CAS  Google Scholar 

  • Hibberd JM, Linley PJ, Khan MS, Gray JC (1998) Transient expression of green fluorescent protein in various plastid types following microprojectile bombardment. Plant J 16:627–632

    Article  CAS  Google Scholar 

  • Iamtham S, Day A (2000) Removal of antibiotic resistance genes from transgenic tobacco plastids. Nat Biotech 18:1172–1176

    Article  CAS  Google Scholar 

  • Itoh R, Yoshida S (2001) Reduced expression of the Arabidopsis minE gene affects size and number of chloroplasts. Cytologia 66:427–430

    Article  CAS  Google Scholar 

  • Jeong WJ, Park Y-I, Suh K, Raven JA, Yoo OJ, Liu JR (2002) A large population of small chloroplasts in tobacco leaf cells allows more effective chloroplast movement than a few enlarged chloroplasts. Plant Physiol 129:112–121

    Article  PubMed  CAS  Google Scholar 

  • Jin Y, Ma D, Dong J, Li D, Deng C, Jin J, Wang T (2007) The HC-Pro protein of potato virus Y interacts with NtMinD of tobacco. Mol Plant Microbe Interact 20:1505–1511

    Article  PubMed  CAS  Google Scholar 

  • Kanamaru K, Fujiwara M, Kim M, Nagashima A, Nakazato E, Tanaka K, Takahashi H (2000) Chloroplast targeting, distribution and transcriptional fluctuation of AtMinD1, a Eubacteria-type factor critical for chloroplast division. Plant Cell Physiol 41:1119–1128

    Article  PubMed  CAS  Google Scholar 

  • Khan MS, Maliga P (1999) Fluorescent antibiotic resistance marker for tracking plastid transformation in higher plants. Nat Biotechnol 17:910–915

    Article  PubMed  CAS  Google Scholar 

  • Komari T, Hiei Y, Yasuhito Saito Y, Nobuhiko Murai N, Takashi Kumashiro T (1996) Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J 10:165–174

    Article  PubMed  CAS  Google Scholar 

  • Kowallik KV, Herrmann RG (1972) Variable amounts of DNA related to the size of chloroplasts: IV. Three-dimensional arrangement of DNA in fully differentiated chloroplasts of Beta vulgaris L. J Cell Sci 11:357–377

    PubMed  CAS  Google Scholar 

  • Lelivelt CLC, McCabe MS, Newell CA, de Snoo CB, Dun KMP, Birch-Machin I, Gray JC, Mills KHG, Nugent JM (2005) Stable Plastid Transformation in Lettuce (Lactuca sativa L.). Plant Mol Biol 58:763–774

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Kong D, Wang D, Ju C, Hu Y, Liu X, Sun J, He Y (2007) The involvement of NtFtsZ2–1 gene in the regulation of chloroplast division and expansion in tobacco. J Plant Physiol Mol Biol 33:267–276

    CAS  Google Scholar 

  • Lohse S, Hause B, Hause G, Fester T (2006) FtsZ characterization and immunolocalization in the two phases of plastid reorganization in arbuscular mycorrhizal roots of Medicago truncatula. Plant Cell Physiol 47:1124–1134

    Article  PubMed  CAS  Google Scholar 

  • Maliga P (1995) Methods in plant molecular biology: a laboratory course manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Maple J, Chua NH, Møller SG (2002) The topological specificity factor AtMinE1 is essential for correct plastid division site placement in Arabidopsis. Plant J 31:269–277

    Article  PubMed  CAS  Google Scholar 

  • Maple J, Aldridge C, Møller SG (2005) Plastid division is mediated by combinatorial assembly of plastid division proteins. Plant J 43:811–823

    Article  PubMed  CAS  Google Scholar 

  • Maple J, Vojta L, Soll J, Møller SG (2007) ARC3 is a stromal plastid division protein with MinC-like properties. EMBO Rep 8:293–299

    Article  PubMed  CAS  Google Scholar 

  • Marrison JL, Rutherford SM, Robertson EJ, Lister C, Dean C, Leech RM (1999) The distinctive roles of five different ARC genes in the chloroplast division process in Arabidopsis. Plant J 18:651–662

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 99:12246–12251

    Article  PubMed  CAS  Google Scholar 

  • McAndrew RS, Froehlich JE, Vitha S, Stokes KD, Osteryoung KW (2001) Colocalization of plastid division proteins in the chloroplast stromal compartment establishes a new functional relationship between FtsZ1 and FtsZ2 in higher plants. Plant Physiol 127:1656–1666

    Article  PubMed  CAS  Google Scholar 

  • McAndrew RS, Olson BJSC, Kadirjan-kalbach DK, Chi-ham CL, Vitha S, Froehlich JE, Osteryoung KW (2008) In vivo quantitative relationship between plastid division proteins FtsZ1 and FtsZ2 and identification of ARC6 and ARC3 in a native FtsZ complex. Biochem J 412:367–378

    Article  PubMed  CAS  Google Scholar 

  • McBride KE, Summerfelt KR (1990) Improved binary vectors for Agrobacterium-mediated plant transformation. Plant Mol Biol 14:269–276

    Article  PubMed  CAS  Google Scholar 

  • Menczel L, Nagy F, Kiss ZR, Maliga P (1981) Streptomycin resistant and sensitive somatic hybrids of Nicotiana tabacum + Nicotiana knightiana: correlation of resistance to N. tabacum plastids. Theor Appl Genet 59:191–195

    Article  CAS  Google Scholar 

  • Miyagishima S-y (2011) Mechanism of plastid division: from a bacterium to an organelle. Plant Physiol 155:1533–1544

    Article  PubMed  CAS  Google Scholar 

  • Miyagishima S-y, Kabeya Y (2010) Chloroplast division: squeezing the photosynthetic captive. Curr Opin Microbiol 13:738–746

    Article  PubMed  CAS  Google Scholar 

  • Moehs CP, Tian L, Osteryoung KW, Dellapenna D (2001) Analysis of carotenoid biosynthetic gene expression during marigold petal development. Plant Mol Biol 45:281–293

    Article  PubMed  CAS  Google Scholar 

  • Mori T, Tanaka I (2000) Isolation of the ftsZ gene from plastid-deficient generative cells of Lilium longiflorum. Protoplasma 214:57–64

    Article  CAS  Google Scholar 

  • Nakanishi H, Suzuki K, Kabeya Y, Miyagishima S (2009) Plant-specific protein MCD1 determines the site of chloroplast division in concert with bacteria-derived MinD. Curr Biol 19:151–156

    Article  PubMed  CAS  Google Scholar 

  • Newell CA, Birch-Machin I, Hibberd JM, Gray JC (2003) Expression of green fluorescent protein from bacterial and plastid promoters in tobacco chloroplasts. Transgenic Res 12:631–634

    Article  PubMed  CAS  Google Scholar 

  • Oey M, Lohse M, Kreikemeyer B, Bock R (2009) Exhaustion of the chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic. Plant J 57:436–445

    Article  PubMed  CAS  Google Scholar 

  • Osteryoung KW, Pyke KA (1998) Plastid division: evidence for a prokaryotically derived mechanism. Curr Opin Plant Biol 1:475–479

    Article  PubMed  CAS  Google Scholar 

  • Osteryoung KW, Vierling E (1995) Conserved cell and organelle division. Nature 376:473–474

    Article  PubMed  CAS  Google Scholar 

  • Osteryoung KW, Stokes KD, Rutherford SM, Percival AL, Lee WY (1998) Chloroplast division in higher plants requires members of two functionally divergent gene families with homology to bacterial ftsZ. Plant Cell 10:1991–2004

    Article  PubMed  CAS  Google Scholar 

  • Primavesi L, Wu H, Mudd E, Day A, Jones H (2007) Visualisation of plastids in endosperm, pollen and roots of transgenic wheat expressing modified GFP fused to transit peptides from wheat SSU RubisCO, rice FtsZ and maize ferredoxin III proteins. Trans Res 17:529–543

    Article  Google Scholar 

  • Pyke KA (1997) The genetic control of plastid division in higher plants. Am J Bot 84:1017–1027

    Article  PubMed  CAS  Google Scholar 

  • Raskin DM, de Boer PAJ (1999) MinDE-dependent pole-to-pole oscillation of division inhibitor MinC in Escherichia coli. J Bacteriol 181:6419–6424

    PubMed  CAS  Google Scholar 

  • Raynaud C, Perennes C, Reuzeau C, Catrice O, Brown S, Bergounioux C (2005) Cell and plastid division are coordinated through the prereplication factor AtCDT1. Proc Natl Acad Sci USA 102:8216–8221

    Article  PubMed  CAS  Google Scholar 

  • Robertson EJ, Pyke KA, Leech RM (1995) arc6, an extreme chloroplast division mutant of Arabidopsis also alters proplastid proliferation and morphology in shoot and root apices. J Cell Sci 108:2937–2944

    PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Saraste M, Sibbald PR, Wittinghofer A (1990) The P-loop a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci 15:430–434

    Article  PubMed  Google Scholar 

  • Sidorov VA, Kasten D, Pang S-Z, Hajdukiewicz PTJ, Staub JM, Nehra NS (1999) Stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. Plant J 19:209–216

    Article  PubMed  CAS  Google Scholar 

  • Stokes KD, McAndrew RS, Figueroa R, Vitha S, Osteryoung KW (2000) Chloroplast division and morphology are differentially affected by overexpression of FtsZ1 and FtsZ2 genes in Arabidopsis. Plant Physiol 124:1668–1677

    Article  PubMed  CAS  Google Scholar 

  • Svab Z, Hajdukiewicz P, Maliga P (1990) Stable transformation of plastids in higher plants. Proc Natl Acad Sci USA 87:8526–8530

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Vitha S, McAndrew RS, Osteryoung KW (2001) FtsZ ring formation at the chloroplast division site in plants. J Cell Biol 153:111–119

    Article  PubMed  CAS  Google Scholar 

  • Vitha S, Froehlich JE, Koksharova O, Pyke KA, Van Erp H, Osteryoung KW (2003) ARC6 is a J-domain plastid division protein and an evolutionary descendant of the cyanobacterial cell division protein Ftn2. Plant Cell 15:1918–1933

    Article  PubMed  CAS  Google Scholar 

  • Ward JE Jr, Lutkenhaus J (1985) Overproduction of FtsZ induces minicell formation in E. coli. Cell 42:941–949

    Article  PubMed  CAS  Google Scholar 

  • Wise A, Liu Z, Binns, AN (2006) Three methods for the introduction of foreign DNA into Agrobacterium. In: Agrobacterium protocols, Springer, Berlin, pp 43–54

  • Yang Y, Glynn JM, Olson BJSC, Schmitz AJ, Osteryoung KW (2008) Plastid division: across time and space. Curr Opin Plant Biol 11:577–584

    Article  PubMed  CAS  Google Scholar 

  • Yoder DW, Kadirjan-Kalbach D, Olson BJ, Miyagishima SY, Deblasio SL, Hangarter RP, Osteryoung KW (2007) Effects of mutations in Arabidopsis FtsZ1 on plastid division, FtsZ ring formation and positioning, and FtsZ filament morphology in vivo. Plant Cell Physiol 48:775–791

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Antibodies for AtFtsZ1-1 and AtMinD were generously provided by Prof. Katherine Osteryoung (Michigan State University, USA) and by Dr. Shin-ya Miyagishima (RIKEN, Japan), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory D. Nugent.

Additional information

Communicated by R. Rose.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chikkala, V.R.N., Nugent, G.D., Stalker, D.M. et al. Expression of Brassica oleracea FtsZ1-1 and MinD alters chloroplast division in Nicotiana tabacum generating macro- and mini-chloroplasts. Plant Cell Rep 31, 917–928 (2012). https://doi.org/10.1007/s00299-011-1212-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-011-1212-x

Keywords

Navigation