Skip to main content

Advertisement

Log in

Identification, isolation and expression analysis of auxin response factor (ARF) genes in Solanum lycopersicum

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Auxin response factors (ARFs) encode transcriptional factors that bind specifically to the TGTCTC-containing auxin response elements found in the promoters of primary/early auxin response genes that regulate plant development. In this study, investigation of the tomato genome revealed 21 putative functional ARF genes (SlARFs), a number comparable to that found in Arabidopsis (23) and rice (25). The full cDNA sequences of 15 novel SlARFs were isolated and delineated by sequencing of PCR products. A comprehensive genome-wide analysis of this gene family is presented, including the gene structures, chromosome locations, phylogeny, and conserved motifs. In addition, a comparative analysis between ARF family genes in tomato and maize was performed. A phylogenetic tree generated from alignments of the full-length protein sequences of 21 OsARFs, 23 AtARFs, 31 ZmARFs, and 21 SlARFs revealed that these ARFs were clustered into four major groups. However, we could not find homologous genes in rice, maize, or tomato with AtARF12-15 and AtARF20-23. The expression patterns of tomato ARF genes were analyzed by quantitative real-time PCR. Our comparative analysis will help to define possible functions for many of these newly isolated ARF-family genes in plant development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ARF:

Auxin response factor

SlARF:

Solanum lycopersicum auxin response factor

ZmARF:

Zea mays auxin response factor

AtARF:

Arabidopsis thaliana auxin response factor

OsARF:

Oryza sativa auxin response factor

qRT-PCR:

quantitative Real-time PCR

SOL:

The International Solanaceae Project

PCR:

Polymerase chain reaction

BlASTN:

Search a nucleotide database using a nucleotide query

MaizeGDB:

The Maize Genetics and Genomics Database

TBLASTN:

Search translated nucleotide database using a protein query

ORF:

Open reading frame

References

  • Alper Y, Milton YN Jr, Bernardo GF, Glaucia MS, Daniel J, John G, Erich G (2009) GRASSIUS: a platform for comparative regulatory genomics across the grasses. Plant Physiol 149:171–180

    Article  Google Scholar 

  • Alvarez JP, Pekker I, Goldshmidt A, Blum E, Amsellem Z, Eshed Y (2006) Endogenous and synthetic microRNA stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell 18:1134–1151

    Article  PubMed  CAS  Google Scholar 

  • Andrew HP, John EB, Remy B (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  Google Scholar 

  • Babenko VN, Rogozin LG, Mekhedov SL, Koonin EV (2004) Prevalence of intron gain over intron loss in the evolution of paralogous gene families. Nucl Acids Res 32:3724–3733

    Article  PubMed  CAS  Google Scholar 

  • Baumberger N, Doesseger B, Guyot R, Diet A, Parsons RL, Clark MA, Simmons MP, Bedinger P, Goff SA, Ringli C, Keller B (2003) Whole-genome comparison of leucine-rich repeat extensins in Arabidopsis and rice. A conserved family of cell wall proteins form a vegetative and a reproductive clade. Plant Physiol 131:1313–1326

    Article  PubMed  CAS  Google Scholar 

  • Blanc G, Wolfe KH (2004) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16:1679–1691

    Article  PubMed  CAS  Google Scholar 

  • Brukhin V, Hernould M, Gonzalez N, Chevalier C, Mouras A (2003) Flower development schedule in tomato Lycopersicon esculentum cv Sweet Cherry Sex. Plant Reprod 15:311–320

    Google Scholar 

  • de Jong M, Mariani C, Vriezen WH (2009) The role of auxin and gibberellin in tomato fruit set. J Exp Bot 60:1523–1532

    Article  PubMed  Google Scholar 

  • Ellis CM, Nagpal P, Jeffery YC, Gretchen H, Thomas J, Jason RW (2005) AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development 132:4563–4574

    Article  PubMed  CAS  Google Scholar 

  • Feng J, Wang K, Liu X, Chen S, Chen J (2009) The quantification of tomato microRNAs response to viral infection by stem-loop real-time RT-PCR. Gene 437:14–21

    Article  PubMed  CAS  Google Scholar 

  • Gaut BS, D’Ennequin MLT, Peek AAS, Sawkins MC (2000) Maize as a model for the evolution of plant nuclear genomes. Proc Natl Acad Sci USA 97:7008–7015

    Article  PubMed  CAS  Google Scholar 

  • Goetz M, Vivian-Smith A, Johnson SD, Koltunow AM (2006) AUXIN RESPONSE FACTOR8 is a negative regulator of fruit initiation in Arabidopsis. Plant Cell 18:1873–1886

    Article  PubMed  CAS  Google Scholar 

  • Goetz M, Hooper LC, Johnson SD, Rodrigues JCM, Vivian-Smith A, Koltunow AM (2007) Expression of aberrant forms of AUXIN RESPONSE FACTOR8 stimulates parthenocarpy in Arabidopsis and tomato. Plant Physiol 145:351–366

    Article  PubMed  CAS  Google Scholar 

  • Guilfoyle TJ, Hagen G (2007) Auxin response factor. Curr Opin Plant Biol 10:453–460

    Article  PubMed  CAS  Google Scholar 

  • Guillon F, Philippe S, Bouchet B, Devaux MF, Frasse P, Jones B, Bouzayen M, Lahaye M (2008) Down-regulation of an auxin response factor in the tomato induces modification of fine pectin structure and tissue architecture. J Exp Bot 61:1419–1430

    Google Scholar 

  • Hamann T, Benkova E, Baurle I, Kientz M, Jurgens G (2002) The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes Dev 16:1610–1615

    Article  PubMed  CAS  Google Scholar 

  • Hoeven RV, Ronning C, Giovannoni J, Martin G, Tanksley S, van der Hoeven R (2002) Deductions about the number, organization, and evolution of genes in the tomato genome based on analysis of a large expressed sequence tag collection and selective genomic sequencing. Plant Cell 14:1441–1456

    Article  PubMed  Google Scholar 

  • Jones B, Frasse P, Olmos E, Zegzouti H, Li ZG, Latché A, Pech JC, Bouzayen M (2002) Down regulation of DR12, an auxin response factor homolog, in the tomato results in a pleiotropic phenotype including dark green and blotchy ripening fruit. Plant J 32:603–613

    Article  PubMed  CAS  Google Scholar 

  • Jong MD, Wolters-Arts M, Feron R, Mariani C, Vriezen WH (2009) The Solanum lycopersicum auxin response factor 7 (SlARF7) regulates auxin signaling during tomato fruit set and development. Plant J 57:160–170

    Article  PubMed  Google Scholar 

  • Kalluri UC, Difazio SP, Brunner AM, Tuskan GA (2007) Genomewide analysis of Aux/IAA and ARF gene families in Populus trichocarpa. BMC Plant Biol 7:1–14

    Article  Google Scholar 

  • Ku HM, Vision T, Liu JP, Tanksley SD (2000) Comparing sequenced segments of the tomato and Arabidopsis genomes: large-scale duplication followed by selective gene loss creates a network of synteny. Proc Natl Acad Sci USA 97:9121–9126

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Tyagi AK, Sharma AK (2011) Genome-wide analysis of auxin response factor (ARF) gene family from tomato and analysis of their role in flower and fruit development. Mol Genet Genomics 285:245–260

    Article  PubMed  CAS  Google Scholar 

  • Li J, Dai X, Zhao Y (2006) A role for auxin response factor 19 in auxin and ethylene signaling in Arabidopsis. Plant Physiol 140:899–908

    Article  PubMed  CAS  Google Scholar 

  • Lim PO, Kim LeeIC, JY KimHJ, Ryu JS, Woo HR, Nam HG (2010) Auxin response factor 2 (ARF2) plays a major role in regulating auxin-mediated leaf longevity. J Exp Bot 61:1419–1430

    Article  PubMed  CAS  Google Scholar 

  • Liscum E, Reed JW (2002) Genetics of Aux/IAA and ARF action in plant growth and RF8 promote jasmonic acid production and flower maturation. Development 132:4107–4118

    Google Scholar 

  • Marin E, Jouannet V, Herz A, Lokerse AS, Weijers D, Vaucheretd H, Nussaumea L, Crespib MD, Maizel A (2010) miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth. Plant Cell 22:1104–1117

    Article  PubMed  CAS  Google Scholar 

  • Nagpal P, Ellis CM, Weber H, Ploense SE, Barkawi LS, Guilfoyle TJ, Hagen G, Alonso JM, Cohen JD, Farmer EE, Ecker JR, Reed JW (2005) Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 132:4107–4118

    Article  PubMed  CAS  Google Scholar 

  • Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Lui A, Nguyen D, Onodera C, Quach H, Smith A, Yu G, Theologis A (2005) Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell 17:444–463

    Article  PubMed  CAS  Google Scholar 

  • Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M (2007) ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell 19:118–130

    Article  PubMed  CAS  Google Scholar 

  • Paponov IA, Teale W, Lang D, Paponov M, Rski R, Rensing SA, Palme K (2009) The evolution of nuclear auxin signalling. BMC Evol Biol 9:126–141

    Article  PubMed  Google Scholar 

  • Quint M, Gray WM (2006) Auxin signaling. Curr Opin Plant Biol 9:448–453

    Article  PubMed  CAS  Google Scholar 

  • Remington DL, Vision TJ, Guilfoyle TJ, Reed JW (2004) Contrasting modes of diversification in the Aux/IAA and ARF gene families. Plant Physiol 135:1738–1752

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Schlueter JA, Dixon P, Granger C, Grant D, Clark L (2004) Mining EST databases to resolve evolutionary events in major crop species. Genome 47:868–876

    Article  PubMed  CAS  Google Scholar 

  • Shen CJ, Wang SK, Bai YH, Wu YR, Zhang SN, Chen M, Guilfoyle TJ, Wu P, Qi YH (2010) Functional analysis of the structural domain of ARF proteins in rice (Oryza sativa L.). J Exp Bot 61:3971–3981

    Article  PubMed  CAS  Google Scholar 

  • Tatematsu K, Kumagai S, Muto H, Sato A, Watahiki MK, Harper RM, Liscum E, Yamamoto KT (2004) MASSUGU2 encodes Aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots in Arabidopsis thaliana. Plant Cell 16:379–393

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Tiwari SB, Hagen G, Guilfoyle T (2003) The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell 15:533–543

    Article  PubMed  CAS  Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle TJ (1997) ARF1, a transcription factor that binds to auxin response elements. Science 276:1865–1868

    Article  PubMed  CAS  Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle TJ (1999a) Activation and repression of transcription by auxin. Proc Natl Acad Sci USA 96:5844–5849

    Article  PubMed  CAS  Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle TJ (1999b) Dimerization and DNA binding of auxin response factors. Plant J 19:309–319

    Article  PubMed  CAS  Google Scholar 

  • Vert G, Walcher CL, Chory J, Nemhauser JL (2008) Integration of auxin and brassinosteroid pathways by auxin response factor 2. Proc Natl Acad Sci USA 105:9829–9834

    Article  PubMed  CAS  Google Scholar 

  • Wang SC, Tiwari SB, Hagen G, Guilfoyle TJ (2005) AUXIN RESPONSE FACTOR7 restores the expression of auxin-responsive genes in mutant Arabidopsis leaf mesophyll protoplasts. Plant Cell 17:1979–1993

    Article  PubMed  CAS  Google Scholar 

  • Wang DK, Pei KM, Fu YP, Sun ZX, Li SJ, Liu H, Tang K, Han B, Tao YZ (2007) Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Gene 394:13–14

    Article  PubMed  CAS  Google Scholar 

  • Wei HB, Cui BM (2006) Research progresses on auxin response factors. J Integ Plant Biol 48:622–627

    Article  CAS  Google Scholar 

  • Weijers D, Schlereth A, Ehrismann JS, Schwank G, Kientz M, Jürgens G (2006) Auxin triggers transient local signaling for cell specification in Arabidopsis embryogenesis. Dev Cell 10:265–270

    Article  PubMed  CAS  Google Scholar 

  • Wilmoth JC, Wang S, Tiwari SB, Joshi AD, Hagen G, Guilfoyle TJ, Alonso JM, Ecker JR, Reed JW (2005) NPH4/ARF7 and ARF19 promote leaf expansion and auxin induced lateral root formation. Plant J 43:118–130

    Article  PubMed  CAS  Google Scholar 

  • Yoon EK, Yang JH, Lee WS (2010) Auxin and abscisic acid responses of auxin response factor 3 in Arabidopsis lateral root development. J Plant Biol 53:150–154

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the State Key Basic Research and Development Plan of China (2009CB119000), the National Natural Science Foundation of China (30771470 and 31071804) and the Zhejiang Province Research Project of China (2009C32025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Lu.

Additional information

Communicated by C. Quiros.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J., Wang, F., Cheng, L. et al. Identification, isolation and expression analysis of auxin response factor (ARF) genes in Solanum lycopersicum . Plant Cell Rep 30, 2059–2073 (2011). https://doi.org/10.1007/s00299-011-1113-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-011-1113-z

Keywords

Navigation