Skip to main content
Log in

Metabolic engineering of isoflavone genistein in Brassica napus with soybean isoflavone synthase

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Genistein, 4′,5,7-trihydroxyisoflavone, is an isoflavonoid compound predominantly restricted to legumes and known to possess phyto-oestrogenic and antioxidative activities. The key enzyme that redirects phenylpropanoid pathway intermediates from flavonoids to isoflavonoids is the isoflavone synthase (IFS). Brassica napus is a non-legume oilseed crop with vegetative tissues producing phenylpropanoids and flavonoids, but does not naturally accumulate isoflavones due to the absence of IFS. To demonstrate whether exogenous IFS is able to use endogenous substrate to produce isoflavone genistein in oilseed crop, the soybean IFS gene (GmIFS2) was incorporated into B. napus plants. The presence of GmIFS2 in B. napus was shown to direct the synthesis and accumulation of genistein derivatives in leaves up to 0.72 mg g−1 DW. In addition, expression levels for most B. napus genes in the phenylpropanoid pathway were altered. These results suggest that the heterologous GmIFS2 enzyme is functionally active at using the B. napus naringenin as a substrate to produce genistein in oilseed rape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GmIFS2:

Glycine max isoflavone synthase 2

HPLC:

High-performance liquid chromatography

MALDI-TOF-MS:

Matrix-assisted laser desorption/ionization-time of flight mass spectrometry

References

  • Akashi T, Aoki T, Ayabe S (2005) Molecular and biochemical characterization of 2-hydroxyisoflavanone dehydratase. Involvement of carboxylesterase-like proteins in leguminous isoflavone biosynthesis. Plant Physiol 137:882–891

    Article  PubMed  CAS  Google Scholar 

  • Bolanos R, Del Castillo A, Francia J (2010) Soy isoflavones versus placebo in the treatment of climacteric vasomotor symptoms: systematic review and meta-analysis. Menopause 17:660–666

    Article  PubMed  Google Scholar 

  • Gao MJ, Lydiate DJ, Li X, Lui H, Gjetvaj B, Hegedus DD, Rozwadowski K (2009) Repression of seed maturation genes by a trihelix transcriptional repressor in Arabidopsis seedlings. Plant Cell 21:54–71

    Article  PubMed  CAS  Google Scholar 

  • Gullett NP, Ruhul Amin AR, Bayraktar S, Pezzuto JM, Shin DM, Khuri FR, Aggarwal BB, Surh YJ, Kucuk O (2010) Cancer prevention with natural compounds. Semin Oncol 37:258–281

    Article  PubMed  CAS  Google Scholar 

  • Hashim MF, Hakamatsuka T, Ebizuka Y, Sankawa U (1990) Reaction mechanism of oxidative rearrangement of flavanone in isoflavone biosynthesis. FEBS Lett 271:219–222

    Article  PubMed  CAS  Google Scholar 

  • Helferich WG, Andrade JE, Hoagland MS (2008) Phytoestrogens and breast cancer: a complex story. Inflammopharmacology 16:219–226

    Article  PubMed  CAS  Google Scholar 

  • Jung W, Yu O, Lau CSM, O’Keefe DP, Odell J, Fader G, McGonigle B (2000) Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nat Biotechnol 18:208–212

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Sarkar FH (2002) Gene expression profiles of genistein-treated PC3 prostate cancer cells. J Nutr 132:3623–3631

    PubMed  CAS  Google Scholar 

  • Li X, Gao MJ, Pan HY, Cui DJ, Gruber MY (2010) Purple canola: Arabidopsis PAP1 increases antioxidants and phenolics in Brassica napus leaves. J Agric Food Chem 58:1639–1645

    Article  PubMed  CAS  Google Scholar 

  • Li X, Gao P, Wu LM, Cui DJ, Parkin I, Saberianfar R, Menassa R, Pan HY, Westcott N, Gruber MY (2011) The Arabidopsis tt19-4 mutant differentially accumulates flavonoids, proanthocyanidins and anthocyanin through a 3′ amino acid substitution in glutathione S-transferase. Plant Cell Environ 34:374–388

    Article  PubMed  CAS  Google Scholar 

  • Liu CJ, Blount JW, Steele CL, Dixon RA (2002) Bottlenecks for metabolic engineering of isoflavone glycoconjugates in Arabidopsis. PNAS 99:14578–14583

    Article  PubMed  CAS  Google Scholar 

  • Moloney MM, Walker JM, Sharma KK (1989) High efficiency transformation of Brassica napus, using Agrobacterium vectors. Plant Cell Rep 8:238–242

    Article  CAS  Google Scholar 

  • Nesi N, Delourme R, Brégeon M, Falentin C, Renard M (2008) Genetic and molecular approaches to improve nutritional value of Brassica napus L. seed. C R Biol 331:763–771

    Article  PubMed  CAS  Google Scholar 

  • Owens DK, Crosby KC, Runac J, Howard BA, Winkel BSJ (2008) Biochemical and genetic characterization of Arabidopsis flavanone 3β-hydroxylase. Plant Physiol Biochem 46:833–843

    Article  PubMed  CAS  Google Scholar 

  • Parniske M, Ahlborn B, Werner D (1991) Isoflavonoid-inducible resistance to the phytoalexin glyceollin in soybean rhizobia. J Bacteriol 173:3432–3439

    Google Scholar 

  • Pedras MS, Zheng QA, Gadagi RS, Rimmer SR (2008) Phytoalexins and polar metabolites from the oilseeds canola and rapeseed: differential metabolic responses to the biotroph Albugo candida and to abiotic stress. Phytochemistry 69:894–910

    Article  PubMed  CAS  Google Scholar 

  • Shih CH, Chen Y, Wang M, Chu IK, Lo C (2008) Accumulation of isoflavone genistin in transgenic tomato plants overexpressing a soybean isoflavone synthase gene. J Agri Food Chem 56:5655–5661

    Article  CAS  Google Scholar 

  • Southern EM (1975) Southern, detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Article  PubMed  CAS  Google Scholar 

  • Sreevidya VS, Srinivasa Rao C, Sullia SB, Ladha JK, Reddy PM (2006) Metabolic engineering of rice with soybean isoflavone synthase for promoting nodulation gene expression in rhizobia. J Exp Bot 57:1957–1969

    Article  PubMed  CAS  Google Scholar 

  • Steele CL, Gijzen M, Qutob D, Dixon RA (1999) Molecular characterization of the enzyme catalyzing the aryl migration reaction of isoflavonoid biosynthesis in soybean. Arch Biochem Biophys 367:146–150

    Article  PubMed  CAS  Google Scholar 

  • Subramanian S, Graham MY, Yu O, Graham TL (2005) RNA interference of soybean isoflavone synthase genes leads to silencing in tissues distal to the transformation site and to enhanced susceptibility to Phytophthora sojae. Plant Physiol 137:1345–1353

    Article  PubMed  CAS  Google Scholar 

  • Taylor CK, Levy RM, Elliott JC, Burnett BP (2009) The effect of genistein aglycone on cancer and cancer risk: a review of in vitro, preclinical, and clinical studies. Nutr Rev 67:398–415

    Article  PubMed  Google Scholar 

  • Tyler BM (2002) Molecular basis of recognition between Phytophthora pathogens and their hosts. Annu Rev Phytopathol 40:137–167

    Article  PubMed  CAS  Google Scholar 

  • Wei S, Li X, Gruber MY, Li R, Zhou R, Zebarjadi A, Hannoufa A (2009) RNAi-mediated suppression of DET1 alters the levels of carotenoids and sinapate esters in seeds of Brassica napus. J Agric Food Chem 57:5326–5333

    Article  PubMed  CAS  Google Scholar 

  • Wong MC, Emery PW, Preedy VR, Wiseman H (2008) Health benefits of isoflavones in functional foods? Proteomic and metabonomic advances. Inflammopharmacology 16:235–239

    Article  PubMed  CAS  Google Scholar 

  • Yu O, Jez JM (2008) Nature’s assembly line: biosynthesis of simple phenylpropanoids and polyketides. Plant J 54:750–762

    Article  PubMed  CAS  Google Scholar 

  • Yu O, McGonigle B (2005) Metabolic engineering of isoflavone biosynthesis. Adv Agron 86:147–190

    Article  CAS  Google Scholar 

  • Yu O, Shi J, Hession AO, Maxwell CA, McGonigle B, Odell JT (2003) Metabolic engineering to increase isoflavone biosynthesis in soybean seed. Phytochemistry 63:753–763

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Program for New Century Excellent Talents in University (XL, NCET09-0423), Ministry of Education of the People’s Republic of China; National Natural Science Foundation of China (NSFC-31000149 and NSFC-30971885); and supported by Transgenic Key Project from Agricultural Ministry (2009ZX08009-062B); Basic Research Program (20060544), Science and Technology Department of Jilin Province; International Technology Cooperation Project (06GH07), Changchun, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Jun Gao.

Additional information

Communicated by J. Zou.

X. Li and J.-C. Qin are joint first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Qin, JC., Wang, QY. et al. Metabolic engineering of isoflavone genistein in Brassica napus with soybean isoflavone synthase. Plant Cell Rep 30, 1435–1442 (2011). https://doi.org/10.1007/s00299-011-1052-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-011-1052-8

Keywords

Navigation