Skip to main content
Log in

Molecular characterization of a Trithorax-group homologue gene from Pinus radiata

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

In eukaryotes, trithorax group proteins play critical roles in the regulation of transcription, cell proliferation, differentiation and development. In this work we report the molecular cloning and characterization of SEPR11, a cDNA from the conifer Monterrey pine (Pinus radiata) encoding a polypeptide homologue of a trithorax group member described in animals and yeast. A full-length clone was isolated from RNA prepared from somatic embryos and contained a 1,239 bp ORF encoding 412 amino acids. Characterization of the isolated sequence revealed that it contains a SPRY domain in the C-terminal region. A comparison of the pine sequence with homologous proteins from plants, animals and yeast revealed that SEPR11 is phylogenetically related to the trithorax group members and not a SPRY-domain containing protein. RT-PCR analyses of transcript abundance in pine tissues demonstrated that SEPR11 is particularly abundant in embryos, suggesting that this gene could be involved during embryo development. The spatial localization of SEPR11 transcripts revealed that gene expression was restricted to the vascular bundle and apical and radicular meristems, suggesting a possible function of this gene in meristem control and vascular bundle development. This work is the first report of the presence of a trithorax group homologue gene in gymnosperm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adamson AL, Shearn A (1996) Molecular genetic analysis of Drosophila ash2, a member of the trithorax group required for imaginal disc pattern formation. Genetics 2:621–633

    Google Scholar 

  • Alvarez-Venegas R, Pien S, Sadder M, Witmer X, Grossniklaus U, Avramova Z (2003) ATX-1, an Arabidopsis homolog of trithorax, activates flower homeotic genes. Curr Biol 13:627–637

    Article  PubMed  CAS  Google Scholar 

  • Andreu-Vieyra C, Matzuk MM (2007) Epigenetic modifications by Trithorax group proteins during early embryogenesis: do members of Trx-G function as maternal effect genes? Reprod Biomed Online 14:201–207

    Article  PubMed  CAS  Google Scholar 

  • Aquea F, Arce-Johnson P (2008) Identification of genes expressed during early somatic embryogenesis in Pinus radiata. Plant Physiol Biochem 46:559–568

    Article  PubMed  CAS  Google Scholar 

  • Aquea F, Gutiérrez F, Medina C, Arce-Johnson P (2008a) A novel Otubain-like cysteine protease gene is preferentially expressed during somatic embryogenesis in Pinus radiata. Mol Biol Rep 35:567–573

    Article  PubMed  CAS  Google Scholar 

  • Aquea F, Poupin MJ, Matus JT, Gebauer M, Medina C, Arce-Johnson P (2008b) Synthetic seed production from somatic embryos of Pinus radiata. Biotechnol Lett 230:1847–1852

    Article  CAS  Google Scholar 

  • Baroux C, Pien S, Grossniklaus U (2007) Chromatin modification and remodeling during early seed development. Curr Opin Genet Dev 17:473–479

    Article  PubMed  CAS  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  • Chanvivattana Y, Bishopp A, Schubert D, Stock C, Moon YH, Sung ZR, Goodrich J (2004) Interaction of Polycomb-group proteins controlling flowering in Arabidopsis. Development 131:5263–5276

    Article  PubMed  CAS  Google Scholar 

  • Fahn A (1982) Plant anatomy, 3rd edn. Pergamon Press, Oxford, p 544

    Google Scholar 

  • Gendall AR, Levy YY, Wilson A, Dean C (2001) The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell 107:525–535

    Article  PubMed  CAS  Google Scholar 

  • Grossniklaus U, Vielle-Calzada JP, Hoeppner MA, Gagliano WB (1998) Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis. Science 280:446–450

    Article  PubMed  CAS  Google Scholar 

  • Guyomarc’h S, Bertrand C, Delarue M, Zhou DX (2005) Regulation of meristem activity by chromatin remodelling. Trends Plant Sci 10:332–338

    Article  PubMed  CAS  Google Scholar 

  • Hsieh TF, Hakim O, Ohad N, Fischer RL (2003) From flour to flower: how Polycomb group proteins influence multiple aspects of plant development. Trends Plant Sci 8:439–445

    Article  PubMed  CAS  Google Scholar 

  • Ikegawa S, Isomura M, Koshizuka Y, Nakamura Y (1999) Cloning and characterization of ASH2L and Ash2l, human and mouse homologs of the Drosophila ash2 gene. Cytogenet Cell Genet 84:167–172

    Article  PubMed  CAS  Google Scholar 

  • Kiefer JC (2007) Epigenetics in development. Dev Dyn 236:1144–1156

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita T, Harada JJ, Goldberg RB, Fischer RL (2001) Polycomb repression of flowering during early plant development. Proc Natl Acad Sci USA 98:14156–14161

    Article  PubMed  CAS  Google Scholar 

  • Köhler C, Grossniklaus U (2002) Epigenetic inheritance of expression states in plant development: the role of Polycomb group proteins. Curr Opin Cell Biol 14:773–779

    Article  PubMed  CAS  Google Scholar 

  • Köhler C, Makarevich G (2006) Epigenetic mechanisms governing seed development in plants. EMBO Rep 7:1223–1227

    Article  PubMed  CAS  Google Scholar 

  • Köhler C, Hennig L, Bouveret R, Gheyselinck J, Grossniklaus U, Gruissem W (2003) Arabidopsis MSI1 is a component of the MEA/FIE Polycomb group complex and required for seed development. EMBO J 22:4804–4814

    Article  PubMed  Google Scholar 

  • Lüscher-Firzlaff J, Gawlista I, Vervoorts J, Kapelle K, Braunschweig T, Walsemann G, Rodgarkia-Schamberger C, Schuchlautz H, Dreschers S, Kremmer E, Lilischkis R, Cerni C, Wellmann A, Lüscher B (2008) The human trithorax protein hASH2 functions as an oncoprotein. Cancer Res 68:749–758

    Article  PubMed  CAS  Google Scholar 

  • Nagy PL, Griesenbeck J, Kornberg RD, Cleary M (2002) A trithorax-group complex purified from Saccharomyces cerevisiae is required for methylation of histone H3. Proc Natl Acad Sci USA 99:90–94

    Article  PubMed  CAS  Google Scholar 

  • Ponting C, Schultz J, Bork P (1997) SPRY domains in ryanodine receptors (Ca(2+)-release channels). Trends Biochem Sci 22:193–194

    Article  PubMed  CAS  Google Scholar 

  • Pien S, Grossniklaus U (2007) Polycomb group and trithorax group proteins in Arabidopsis. Biochim Biophys Acta 1769:375–382

    PubMed  CAS  Google Scholar 

  • Rajasekhar VK, Begemann M (2007) roles of polycomb group proteins in development and disease: a stem cell perspective. Stem Cells 25:2498–2510

    Article  PubMed  CAS  Google Scholar 

  • Rhodes DA, Ihrke G, Reinicke AT, Malcherek G, Towey M, Isenberg DA, Trowsdale J (2002) The 52, 000 MW Ro/SS-A autoantigen in Sjögren’s syndrome/systemic lupus erythematosus (Ro52) is an interferon-gamma inducible tripartite motif protein associated with membrane proximal structures. Immunology 106:246–256

    Article  PubMed  CAS  Google Scholar 

  • Rhodes DA, de Bono B, Trowsdale J (2005) Relationship between SPRY and B30.2 protein domains. Evolution of a component of immune defence? Immunology 116:411–417

    PubMed  CAS  Google Scholar 

  • Roelen BA, Lopes SM (2008) Of stem cells and gametes: similarities and differences. Curr Med Chem 15:1249–1256

    Article  PubMed  CAS  Google Scholar 

  • Roguev A, Schaft D, Shevchenko A, Pijnappel WW, Wilm M, Aasland R, Stewart AF (2001) The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and methylates histone 3 lysine 4. EMBO J 20:7137–7148

    Article  PubMed  CAS  Google Scholar 

  • Sánchez MC, Smith AG, Hackett WP (1995) Localized expression of a proline-rich protein gene in juvenile and mature ivy petioles in relation to rooting potential. Physiol Plant 93:207–216

    Article  Google Scholar 

  • Schubert D, Clarenz O, Goodrich J (2005) Epigenetic control of plant development by Polycomb-group proteins. Curr Opin Plant Biol 8:553–556

    Article  PubMed  CAS  Google Scholar 

  • Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G (2007) Genome regulation by polycomb and trithorax proteins. Cell 128:735–745

    Article  PubMed  CAS  Google Scholar 

  • Simon JA, Tamkun JW (2002) Programming off and on states in chromatin: mechanisms of Polycomb and trithorax group complexes. Curr Opin Genet Dev 12:210–218

    Article  PubMed  CAS  Google Scholar 

  • Springer NM, Danilevskaya ON, Hermon P, Helentjaris TG, Phillips RL, Kaeppler HF, Kaeppler SM (2002) Sequence relationships, conserved domains, and expression patterns for maize homologs of the polycomb group genes E(z), esc, and E(Pc). Plant Physiol 128:1332–1345

    Article  PubMed  CAS  Google Scholar 

  • Thakur JK, Malik MR, Bhatt V, Reddy MK, Sopory SK, Tyagi AK, Khurana JP (2003) A POLYCOMB group gene of rice (Oryza sativa L. subspecies indica), OsiEZ1, codes for a nuclear-localized protein expressed preferentially in young seedlings and during reproductive development. Gene 314:1–13

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Zhou Y, Yin B, Du G, Huang X, Li G, Shen Y, Yuan J, Qiang B (2001) ASH2L: alternative splicing and downregulation during induced megakaryocytic differentiation of multipotential leukemia cell lines. J Mol Med 79:399–405

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Li Z, Messing EM, Wu G (2002) Activation of Ras/Erk pathway by a novel MET-interacting protein RanBPM. J Biol Chem 277:36216–36222

    Article  PubMed  CAS  Google Scholar 

  • Wood CC, Robertson M, Tanner G, Peacock WJ, Dennis ES, Helliwell CA (2006) The Arabidopsis thaliana vernalization response requires a polycomb-like protein complex that also includes VERNALIZATION INSENSITIVE 3. Proc Natl Acad Sci USA 103:14631–14636

    Article  PubMed  CAS  Google Scholar 

  • Yoshida N, Yanai Y, Chen L, Kato Y, Hiratsuka J, Miwa T, Sung ZR, Takahashi S (2001) EMBRYONIC FLOWER2, a novel polycomb group protein homolog, mediates shoot development and flowering in Arabidopsis. Plant Cell 13:2471–2481

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a PhD fellowship from CONICYT (Gobierno de Chile) and a VRAID fellowship from the Pontificia Universidad Católica de Chile to F. Aquea. This work was financed by the Millennium Nucleus for Plant Functional Genomics (P06-009-F), Chilean fruit consortium and Xunta de Galicia (Spain) through the project PGIDT06PXIB40003. We also thank Forestal MININCO and Michael Handford for his assistance in language support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricio Arce-Johnson.

Additional information

Communicated by M. Jordan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aquea, F., Matte, J.P., Gutiérrez, F. et al. Molecular characterization of a Trithorax-group homologue gene from Pinus radiata . Plant Cell Rep 28, 1531–1538 (2009). https://doi.org/10.1007/s00299-009-0752-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-009-0752-9

Keywords

Navigation