Skip to main content
Log in

In vitro hermaphrodism induction in date palm female flower

  • Cell Biology and Morphogenesis
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

This study explores and reports on the gain brought to the morphogenetic aptitude of female date palm inflorescences through in vitro hermaphrodism induction. It investigates the main factors involved in the process of sex modification through hormonal induction, such as the floral developmental stage and hormone combination and concentration. It demonstrates that the vestigial stamens (staminodes) of female date palm flowers display a new and high capacity to proliferate under particular in vitro conditions, without blocking carpel’s development, leading to morphologically typical hermaphrodite flowers. This de novo activation of repressed stamens was found to occur rapidly. The isolated pollen mother cells appear in the obtained anther’s locules and undergo an ordinary microsporogenesis process. The data show that hermaphrodism induction depended heavily on both the growth regulators applied and the flower’s developmental stage. They also confirm the early theory that suggests that dioecious plants come from a hermaphrodite ancestor. Such hermaphrodism control can provide new prospects and opportunities for the investigation of the in vitro self-fertilization process. It can also be useful in improving the understanding of the genetic mechanism involved in sex organ development in date palm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

IBA:

Indole-3-butyric acid

BAP:

6-Benzylaminopurine

2,4-D:

2,4-Dichlorophenoxyacetic acid

MS:

Murashige and Skoog

References

  • Ainsworth C (2000) Boys and girls come out to play: the molecular biology of dioecious plants. Ann Bot 86:211–221

    Article  Google Scholar 

  • Bhaskaran S, Smith R (1992) Somatic embryogenesis from shoot tip and immature inflorescence of Phoenix dactylifera cv. Barhee. Plant Cell Rep 12:22–25

    Article  Google Scholar 

  • Calderon-Urrea A, Dellaporta SL (1999) Cell death and cell protection genes determine the fate of pistils in maize. Development 126:435–441

    PubMed  CAS  Google Scholar 

  • Caporali E, Carboni A, Galli MG, Rossi G, Spada A, Marziani Longo GP (1994) Development of male and female flower in Asparagus officinalis. Search for point of transition from hermaphroditic to unisexual developmental pathway. Sex Plant Reprod 7(4):239–249

    Article  Google Scholar 

  • Chaibi N, Ben Abdallah A, Harzallah H, Lepoivre P (2002) Potentialités androgénétiques du palmier dattier Phoenix dactylifera L. et culture in vitro d’anthères. Biotechnol Agron Soc Environ 6(4):201–207

    Google Scholar 

  • Charlesworth D (2002) Plant sex determination and sex chromosomes. Heredity 88:94–101

    Article  PubMed  Google Scholar 

  • Charlesworth D (2004) Plant Evolution: modern sex chromosomes. Curr Biol 14:R271–R273

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth D, Charlesworth B, Marais G (2005) Steps in the evolution of heteromorphic sex chromosomes. Heredity 95:118–128

    Article  PubMed  CAS  Google Scholar 

  • Chhibber N, Sharma N, Verma S (2007) Genetic system of chillies I. Breeding and meiotic system of Var. KL-1. Cytologia 72(1):17–21

    Article  Google Scholar 

  • Cordero RE, Gunckel JE (1982) The effects of acute and chronic gamma irradiation on Lupinus albus L.-II. Effects of acute irradiation on floral development. Environ Exp Bot 22:127–137

    Article  Google Scholar 

  • Corley RHV (1976) Sex differentiation in oil palm: effects of growth regulators. J Exp Bot 27:553–558

    Article  CAS  Google Scholar 

  • Costa JY, Forni-Martins ER (2004) A triploid cytotype of Echinodorus tennellus. Aquat Bot 79:325–332

    Article  CAS  Google Scholar 

  • Darwin C (1877) The different forms of flowers on plants of the same species. Murray, London

    Google Scholar 

  • Dellaporta SL, Calderon-Urrea A (1994) The sex determination process in maize. Science 266(5190):1501–1505

    Article  PubMed  CAS  Google Scholar 

  • De Mason DA, Tisserat B (1980) The occurrence and structure of apparently bisexual flowers in the date palm, Phoenix dactylifera L. (Arecaceae). Bot J Linn Soc 81:283–292

    Article  Google Scholar 

  • De Mason DA, Stolte KW, Tisserat B (1982) Floral development in Phoenix dactylifera. Can J Bot 60(8):1437–1446

    Google Scholar 

  • Drira N, Benbadis A (1985) Multiplication végétative du palmier dattier (Phoenix dactylifera L.) par réversion, en culture in vitro, d’ébauches florales de pieds femelles adultes. J Plant Physiol 119:227–235

    Google Scholar 

  • Fki L, Masmoudi R, Drira N, Rival A (2003) An optimised protocol for plant regeneration from embryogenic suspension cultures of date palm (Phoenix dactylifera L.) cv. Deglet Nour. Plant Cell Rep 21:517–524. doi:10.1007/s00299-002-0558-5

    PubMed  CAS  Google Scholar 

  • Guttman DS, Charlesworth D (1998) An X-linked gene with a degenerate Y-linked homologue in a dioecious plant. Nature 393:263–266

    Article  PubMed  CAS  Google Scholar 

  • Halle F, Oldeman RAA, Tomlinson PB (1978) Tropical trees and forests: an architectural analysis. Springer, Berlin

    Google Scholar 

  • Hao YJ, Wang DH, Peng YB, Bai SL, Xu LY, Li YQ, Xu ZH, Bai SN (2003) DNA damage in the early primordial anther is closely correlated with stamen arrest in the female flower of cucumber (Cucumis sativus L.). Planta 217:888–895

    Article  PubMed  CAS  Google Scholar 

  • Kater MM, Franken J, Carney KJ, Colombo L, Angenent GC (2001) Sex determination in the monoecious species cucumber is confined to specific floral whorls. Plant Cell 13:481–493

    Article  PubMed  CAS  Google Scholar 

  • Komai F, Masuda K (2004) Plasticity in sex expression of spinach (Spinacia oleracea) regenerated from root tissues. Plant Cell Tissue Organ Cult 78(3):285–287

    Article  Google Scholar 

  • Komai F, Shikazono N, Tanaka A (2003) Sexual modification of female spinach seeds (Spinacia oleracea L.) by irradiation with ion particles. Plant Cell Rep 21:713–717

    PubMed  CAS  Google Scholar 

  • Law TF, Lebel-Hardenack S, Grant SR (2002) Silver enhances stamen development in female white campion (Silene latifolia [Caryophyllaceae]). Am J Bot 89(6):1014–1020

    Article  Google Scholar 

  • Lebel-Hardenack S, Grant SR (1997) Genetics of sex determination in flowering Plants. Trends Plant Sci 2:130–136

    Article  Google Scholar 

  • Liu Z, Moore PH, Ma H, Ackerman CM, Ragiba M, Yu Q, Pearl HM, Kim MS, Charlton JW, Stiles JI, Zee FT, Paterson AH, Ming R (2004) A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 427:348–352

    Article  PubMed  CAS  Google Scholar 

  • Madan L, Jaiswal VS (1988) Modification of flower sex and acid phosphatase activity by phthalimides in female plants of Morus nigra L. Plant Growth Regul 7(1):29–37

    Article  Google Scholar 

  • Marutani M, Sheffer RD, Kameto H (1993) Cytological analysis of Arithurium andraenum (Araceae), its related taxa and their hybrids. Am J Bot 80:93–103

    Article  Google Scholar 

  • Ming R, Moore PH (2007) Genomics of sex chromosomes. Curr Opin Plant Biol 10:123–130

    Article  PubMed  CAS  Google Scholar 

  • Monéger F, Negrutiu I (2000) Du sexe des fleurs. Biofutur 202:32–35

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Negrutiu I, Vyskot B, Barbacar N, Georgiev S, Moneger F (2001) Dioecious plants: a key to the early events of sex chromosome evolution. Plant Physiol 127:1418–1424

    Article  PubMed  CAS  Google Scholar 

  • Parker JS, Clark MS (1991) Dosage sex-chromosome systems in plants. Plant Sci 80:79–92

    Article  Google Scholar 

  • Renner SS, Ricklefs RE (1995) Dioecy and its correlates in the flowering plants. Am J Bot 82:596–606

    Article  Google Scholar 

  • Rigamoto RR, Tyagi AP (2002) Pollen fertility status in coastal plant species of Rotuma Island. South Pac J Nat Sci 20:30–33

    Google Scholar 

  • Siljak-Yakovlev S, Cerbah M, Sarr A, Benmalek S, Bounaga N, Coba de la Pena T, Brown S (1996) Chromosomal sex determination and heterochromatin structure in date palm. Sex Plant Reprod 9:127–132

    Article  Google Scholar 

  • Singh BB, Adu-Dapaah HK (1998) A partial male sterile mutant in cowpea. Afr Crop Sci J 6(1):97–101

    Google Scholar 

  • Singh RP, Gunckel JE (1965) Studies on the effect of chronic gamma rays on Ricinus - I Development of pollen, ovule and female gametophyte. Radiat Bot 5(6):525–542

    Article  Google Scholar 

  • Tanurdzic M, Banks JA (2004) Sex determining mechanisms in land plants. Plant Cell 16:61–71

    Article  Google Scholar 

  • Tomlinson PB (1961) Anatomy of the monocotyledons. II. Palmae. Clarendon Press, Oxford, 453 pp

  • Truernit E, Stadler R, Baier K, Sauer N (1999) A male gametophyte-specific monosaccharide transporter in Arabidopsis. Plant J 17(2):191–201

    Article  PubMed  CAS  Google Scholar 

  • Vyskot B, Hobza R (2004) Gender in plants: sex chromosomes are emerging from the fog. Trends Genet 20(9):432–438

    Article  PubMed  CAS  Google Scholar 

  • Welgel D, Meyerowltz EM (1994) The ABCs of floral homeotic genes. Cell 78:203–209

    Article  Google Scholar 

  • Zluvova J, Georgiev S, Janousek B, Charlesworth D, Vyskot B, Negrutiu I (2007) Early events in the evolution of the Silene latifolia Y chromosome: male specialization and recombination arrest. Genetics 177:375–386. doi:10.1534/genetics.107.071175

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Higher Education, Scientific Research and Technology in Tunisia and the International Atomic Energy Agency, under TC Project RAF/5/049. The authors would like to thank the staff of the Regional Centre of Oasian Agriculture Research in Deguache (south of Tunisia) for their help in collecting the inflorescences. They wish also to extend their gratitude to Mr. Anouar Smaoui from the English Department at the Sfax Faculty of Science for his valuable editing and careful reviewing of the manuscript of the current study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faïza Masmoudi-Allouche.

Additional information

Communicated by K. Kamo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masmoudi-Allouche, F., Châari-Rkhis, A., Kriaâ, W. et al. In vitro hermaphrodism induction in date palm female flower. Plant Cell Rep 28, 1–10 (2009). https://doi.org/10.1007/s00299-008-0611-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-008-0611-0

Keywords

Navigation