Skip to main content
Log in

Plant sigma factors and their role in plastid transcription

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Plant sigma factors determine the promoter specificity of the major RNA polymerase of plastids and thus regulate the first level of plastome gene expression. In plants, sigma factors are encoded by a small family of nuclear genes, and it is not yet clear if the family members are functionally redundant or each paralog plays a particular role. The review presents the analysis of the information on plant sigma factors obtained since their discovery a decade ago and focuses on similarities and differences in structure and functions of various paralogs. Special attention is paid to their interaction with promoters, the regulation of their expression, and their role in the development of a whole plant. The analysis suggests that though plant sigma factors are basically similar, at least some of them perform distinct functions. Finally, the work presents the scheme of this gene family evolution in higher plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PEP:

Plastid encoded RNA polymerase

LRP-psbD :

Light-regulated promoter psbD

References

  • Allison LA (2000) The role of sigma factors in plastid transcription. Biochimie 82:537–548

    PubMed  Google Scholar 

  • Baena-Gonzalez E, Baginsky S, Mulo P, Summer H, Aro E-M, Link G (2001) Chloroplast transcription at different light intensities. Glutathione-mediated phosphorylation of the major RNA polymerase involved in redox-regulated organellar gene expression. Plant Physiol 127:1044–1052

    PubMed  Google Scholar 

  • Baginsky S, Tiller K, Pfannschmidt T, Link G (1999) PTK, the chloroplast RNA polymerase-associated protein kinase from mustard (Sinapis alba), mediates redox control of plastid in vitro transcription. Plant Mol Biol 39:1013–1023

    PubMed  Google Scholar 

  • Barkan A, Goldschmidt-Clermont M (2000) Participation of nuclear genes in chloroplast gene expression. Biochimie 82:559–572

    PubMed  Google Scholar 

  • Barne KA, Bown JA, Busby SJ, Minchin SD (1997) Region 2.5 of the Escherichia coli RNA polymerase sigma70 subunit is responsible for the recognition of the ‘extended-10’ motif at promoters. EMBO J 16:4034–4040

    PubMed  Google Scholar 

  • Beardslee TA, Roy-Chowdhury S, Jaiswal P, Buhot L, Lerbs-Mache S, Stern DB, Allison LA (2002) A nucleus-encoded maize protein with sigma factor activity accumulates in mitochondria and chloroplasts. Plant J 31:199–209

    PubMed  Google Scholar 

  • Borukhov S, Severinov K (2002) Role of the RNA polymerase sigma subunit in transcription initiation. Res Microbiol 153:557–562

    PubMed  Google Scholar 

  • Callaci S, Heyduk E, Heyduk T (1999) Core RNA polymerase from E. coli induces a major change in the domain arrangement of the sigma 70 subunit. Mol Cell 3:229–238

    PubMed  Google Scholar 

  • Campbell EA, Muzzin O, Chlenov M, Sun JL, Olson CA, Weinman O, Trester-Zedlitz ML, Darst SA (2002) Structure of the bacterial RNA polymerase promoter specificity σ subunit. Mol Cell 9:527–539

    PubMed  Google Scholar 

  • Carter ML, Smith AC, Kobayashi H, Purton S, Herrin D (2004) Structure, circadian regulation and bioinformatics analysis of the unique sigma factor gene in Chlamydomonas reinhardtii. Photosynth Res 82:339–349

    PubMed  Google Scholar 

  • Cashel M, Hsu LM, Hernandez VJ (2003) Changes in conserved region 3 of Escherichia coli sigma 70 reduce abortive transcription and enhance promoter escape. J Biol Chem 278:5539–5547

    PubMed  Google Scholar 

  • Chen L-J, Rogers SA, Benett DC, Hu M-C, Orozco EM Jr (1990) An in-vitro transcription termination system to analyze chloroplast promoters: identification of multiple promoters for the spinach atpB gene. Curr Genet 17:55–64

    PubMed  Google Scholar 

  • Chen MC, Cheng MC, Chen SCG (1993) Characterization of the promoter of rice plastid psaA-psaB-rps14 operon and the DNA-specific binding proteins. Plant Cell Physiol 34:577–584

    PubMed  Google Scholar 

  • Christopher DA, Mullet JE (1994) Separate photosensory pathways co-regulate blue light/ultraviolet-A-activated psbD-psbC transcription and light-induced D2 and CP43 degradation in barley (Hordeum vulgare) chloroplasts. Plant Physiol 104:1119–1129

    PubMed  Google Scholar 

  • Darst SA, Opalka N, Chacon P, Polyakov A, Richter C, Zhang G, Wriggers W (2002) Conformational flexibility of bacterial RNA polymerase. Proc Natl Acad Sci USA 99:4296–4301

    PubMed  Google Scholar 

  • Demarsy E, Courtois F, Azevedo J, Buhot L, Lerbs-Mache S (2006) Building-up of the plastid transcriptional machinery during germination and early plant development. Plant Physiol 142:993–1003

    PubMed  Google Scholar 

  • Ding Q, Kusano S, Villarejo M, Ishihama (1995) A Promoter selectivity control of Escherichia coli RNA polymerase by ionic strength: differential recognition of osmoregulated promoters by E sigma D and E sigma S holoenzymes. Mol Microbiol 16:649–656

    PubMed  Google Scholar 

  • Douglas S, Zauner S, Fraunholz M, Beaton M, Penny S, Deng LT, Wu X, Reith M, Cavalier-Smith T, Maier UG (2001) The highly reduced genome of an enslaved algal nucleus. Nature 410:1091–1096

    PubMed  Google Scholar 

  • Dove SL, Darst SA, Hochschild A (2003) Region 4 of sigma as a target for transcription regulation. Mol Microbiol 48:863–874

    PubMed  Google Scholar 

  • Dyall SD, Brown MT, Johnson PJ (2004) Ancient invasions: from endosymbionts to organelles. Science 304:253–257

    PubMed  Google Scholar 

  • Favory JJ, Kobayshi M, Tanaka K, Peltier G, Kreis M, Valay JG, Lerbs-Mache S (2005) Specific function of a plastid sigma factor for ndhF gene transcription. Nucleic Acids Res 33:5991–5999

    PubMed  Google Scholar 

  • Fujiwara M, Nagashima A, Kanamaru K, Tanaka K, Takahashi H (2000) Three new nuclear genes, sigD, sigE, sigF, encoding putative plastid RNA polymerase sigma factors in Arabidopsis thaliana. FEBS Lett 481:47–52

    PubMed  Google Scholar 

  • Gaal T, Ross W, Estrem ST, Nguyen LH, Burgess RR, Gourse RL (2001) Promoter recognition and discrimination by EsigmaS RNA polymerase. Mol Microbiol 42:939–954

    PubMed  Google Scholar 

  • Hahn S (2004) Structure and mechanism of the RNA polymerase II transcription machinery. Nat Struct Mol Biol 11:394–403

    PubMed  Google Scholar 

  • Hajdukiewicz PTJ, Allison LA, Maliga P (1997) The two RNA polymerase encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J 16:4041–4048

    PubMed  Google Scholar 

  • Hakimi MA, Privat I, Valay JG, Lerbs-Mache S (2000) Evolutionary conservation of C-terminal domains of primary sigma(70)-type transcription factors between plants and bacteria. J Biol Chem 275:9215–9221

    PubMed  Google Scholar 

  • Hanaoka M, Kanamaru K, Takahashi H, Tanaka K (2003) Molecular genetic analysis of chloroplast gene promoters dependent on SIG2, a nucleus-encoded sigma factor for the plastid-encoded RNA polymerase, in Arabidopsis thaliana. Nucleic Acids Res 31:7090–7098

    PubMed  Google Scholar 

  • Hanaoka M, Kanamaru K, Fujiwara M, Takahashi H, Tanaka K (2005) Glutamyl-tRNA mediates a switch in RNA polymerase use during chloroplast biogenesis. EMBO Rep 6:545–550

    PubMed  Google Scholar 

  • Hara K, Morita M, Takahashi R, Sugita M, Kato S, Aoki S (2001a) Characterization of two genes, Sig1 and Sig2, encoding distinct plastid sigma factors(1) in the moss Physcomitrella patens: phylogenetic relationships to plastid sigma factors in higher plants. FEBS Lett 499:87–91

    Google Scholar 

  • Hara K, Sugita M, Aoki S (2001b) Cloning and characterization of the cDNA for a plastid sigma factor from the moss Physcomitrella patens. Biochim Biophys Acta 1517:302–306

    Google Scholar 

  • Haugen SP, Berkmen MB, Ross W, Gaal T, Ward C, Gourse RL (2006) rRNA promoter regulation by nonoptimal binding of sigma region 1.2: an additional recognition element for RNA polymerase. Cell 125:1069–1082

    PubMed  Google Scholar 

  • Helmann JD, Chamberlin MJ (1988) Structure and function of bacterial sigma factors. Annu Rev Biochem 57:839–872

    PubMed  Google Scholar 

  • Hoffer PH, Christopher DA (1997) Structure and blue-light-responsive transcription of a chloroplast psbD promoter from Arabidopsis thaliana. Plant Physiol 115:213–222

    PubMed  Google Scholar 

  • Homann A, Link G (2003) DNA-binding and transcription characteristics of three cloned sigma factors from mustard (Sinapis alba L.) suggest overlapping and distinct roles in plastid gene expression. Eur J Biochem 270:1288–1300

    PubMed  Google Scholar 

  • Hsu HH, Huang WC, Chen JP, Huang LY, Wu CF, Chang BY (2004) Properties of Bacillus subtilis sigma A factors with region 1.1 and the conserved Arg-103 at the N terminus of region 1.2 deleted. J Bacteriol 186:2366–2375

    PubMed  Google Scholar 

  • Ichikawa K, Sugita M, Imaizumi T, Wada M, Aoki S (2004) Differential expression on a daily basis of plastid sigma factor genes from the moss Physcomitrella patens. Regulatory interactions among PpSig5, the circadian clock, and blue light signaling mediated by cryptochromes. Plant Physiol 136:4285–4298

    PubMed  Google Scholar 

  • Ishihama A (2000) Functional modulation of Escherichia coli RNA polymerase. Annu Rev Microbiol 54:499–518

    PubMed  Google Scholar 

  • Ishizaki Y, Tsunoyama Y, Hatano K, Ando K, Kato K, Shinmyo A, Kobori M, Takeba G, Nakahira Y, Shiina T (2005) A nuclear encoded sigma factor, Arabidopsis SIG6, recognizes sigma-70 type chloroplast promoters and regulates early chloroplast development in cotyledons. Plant J 42:133–144

    PubMed  Google Scholar 

  • Isono K, Shimizu M, Yoshimoto K, Niwa Y, Satoh K, Yokota A, Kobayashi H (1997) Leaf-specifically expressed genes for polypeptides destined for chloroplasts with domains of sigma70 factors of bacterial RNA polymerases in Arabidopsis thaliana. Proc Natl Acad Sci USA 94:14948–14953

    PubMed  Google Scholar 

  • Jishage M, Kvint K, Shingler V, Nystrom T (2002) Regulation of sigma factor competition by the alarmone ppGpp. Genes Dev 16:1260–1270

    PubMed  Google Scholar 

  • Kanamaru K, Tanaka K (2004) Roles of chloroplast RNA polymerase sigma factors in chloroplast development and stress response in higher plants. Biosci Biotechnol Biochem 68:2215–2223

    PubMed  Google Scholar 

  • Kanamaru K, Fujiwara M, Seki M, Katagiri T, Nakamura M, Mochizuki N, Nagatani A, Shinozaki K, Tanaka K, Takahashi H (1999) Plastidic RNA polymerase σ factors in Arabidopsis. Plant Cell Physiol 40:832–842

    PubMed  Google Scholar 

  • Kanamaru K, Nagashima A, Fujiwara M, Shimada H, Shirano Y, Nakabayashi K, Shibata D, Tanaka K, Takahashi H (2001) An Arabidopsis sigma factor (SIG2)-dependent expression of plastid encoded tRNAs in chloroplasts. Plant Cell Physiol 42:1034–1043

    PubMed  Google Scholar 

  • Kasai K, Kanno T, Endo Y, Wakasa K, Tozawa Y (2004a) Guanosine tetra- and pentaphosphate synthase activity in chloroplasts of a higher plant: association with 70S ribosomes and inhibition by tetracycline. Nucleic Acids Res 32:5732–5741

    Google Scholar 

  • Kasai K, Kawagishi-Kobayashi M, Teraishi M, Ito Y, Ochi K, Wakasa K, Tozawa Y (2004b) Differential expression of three plastidial sigma factors, OsSIG1, OsSIG2A, and OsSIG2B, during leaf development in rice. Biosci Biotechnol Biochem 68:973–977

    Google Scholar 

  • Kestermann M, Neukirchen S, Kloppstech K, Link G (1998) Sequence and expression characteristics of a nuclear-encoded chloroplast sigma factor from mustard (Sinapis alba). Nucleic Acids Res 26:2747–2753

    PubMed  Google Scholar 

  • Kim M, Mullet JE (1995) Identification of a sequence-specific DNA binding factor required for transcription of the barley chloroplast blue light-responsive psbD-psbC promoter. Plant Cell 7:1445–1457

    PubMed  Google Scholar 

  • Kim M, Thum KE, Morishige DT, Mullet JE (1999) Detailed architecture of the barley chloroplast psbD-psbC blue light-responsive promoter. J Biol Chem 274:4684–4692

    PubMed  Google Scholar 

  • Kuznedelov K, Minakhin L, Niedziela-Majka A, Dove SL, Rogulja D, Nickels BE, Hochschild A, Heyduk T, Severinov K (2002) A role for interaction of the RNA polymerase flap domain with the sigma subunit in promoter recognition. Science 295:855–857

    PubMed  Google Scholar 

  • Lahiri SD, Allison LA (2000) Complementary expression of two plastid-localized sigma-like factors in maize. Plant Physiol 123:883–894

    PubMed  Google Scholar 

  • Lahiri SD, Yao J, McCumbers C, Allison LA (1999) Tissue-specific and light-dependent expression within a family of nuclear-encoded sigma-like factors from Zea mays. Mol Cell Biol Res Commun 1:14–20

    PubMed  Google Scholar 

  • Langer D, Hain J, Thuriaux P, Zillig W (1995) Transcription in archaea: similarity to that in eucarya. Proc Natl Acad Sci USA 92:5768–5772

    PubMed  Google Scholar 

  • Lerbs-Mache S (2000) Regulation of rDNA transcription in plastids of higher plants. Biochimie 82:525–535

    PubMed  Google Scholar 

  • Liere K, Borner T (2006) Transcription of plastid genes. In: Grasser KD (ed) Regulation of transcription in plants. Blackwell, Oxford, pp 184–224

    Google Scholar 

  • Liu B, Troxler RF (1996) Molecular characterization of a positively photoregulated nuclear gene for a chloroplast RNA polymerase sigma factor in Cyanidium caldarium. Proc Natl Acad Sci USA 93:3313–3318

    PubMed  Google Scholar 

  • Loschelder H, Schweer J, Link B, Link G (2006) Dual temporal role of plastid sigma factor 6 in Arabidopsis development. Plant Physiol 142:642–650

    PubMed  Google Scholar 

  • Lonetto M, Gribskov M, Gross CA (1992) The sigma70 family: sequence conservation and evolutionary relationships. J Bacteriol 174:3843–3849

    PubMed  Google Scholar 

  • Lysenko EA (2006) Analysis of the evolution of the Sig gene family encoding plant sigma factors. Russ J Plant Physiol 53:605–614

    Google Scholar 

  • Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 99:12246–12251

    PubMed  Google Scholar 

  • Matsuo M, Ito Y, Yamauchi R, Obokata J (2005) The rice nuclear genome continuously integrates, shuffles, and eliminates the chloroplast genome to cause chloroplast-nuclear DNA flux. Plant Cell 17:665–675

    PubMed  Google Scholar 

  • Minakhin L, Bhagat S, Brunning A, Campbell EA, Darst SA, Ebright RH, Severinov K (2001) Bacterial RNA polymerase subunit ω and eucariotic RNA polymerase subunit RPB6 are sequence, structural, and functional homologs and promote RNA polymerase assembly. Proc Natl Acad Sci USA. 98: 892–897

    PubMed  Google Scholar 

  • Minoda A, Nagasawa K, Hanaoka M, Horiuchi M, Takahashi H, Tanaka K (2005) Microarray profiling of plastid gene expression in a unicellular red alga, Cyanidioschyzon merolae. Plant Mol Biol 59:375–385

    PubMed  Google Scholar 

  • Möller SG, Kim Y-S, Kunkel T, Chua N-H (2003) PP7 is a positive regulator of blue light signaling in Arabidopsis. Plant Cell 15:1111–1119

    PubMed  Google Scholar 

  • Monde RA, Schuster G, Stern DB (2000) Processing and degradation of chloroplast mRNA. Biochimie 82:573–582

    PubMed  Google Scholar 

  • Morikawa K, Ito S, Tsunoyama Y, Nakahira Y, Shiina T, Toyoshima Y (1999) Circadian-regulated expression of a nuclear-encoded plastid sigma factor gene (sigA) in wheat seedlings. FEBS Lett 451:275–278

    PubMed  Google Scholar 

  • Morikawa K, Shiina T, Murakami S, Toyoshima Y (2002) Novel nuclear-encoded proteins interacting with a plastid sigma factor, Sig1, in Arabidopsis thaliana. FEBS Lett 514:300–304

    PubMed  Google Scholar 

  • Murakami KS, Masuda S, Darst SA (2002) Structural basis of transcription initiation: RNA polymerase holoenzyme at 4 Å resolution. Science 296:1280–1284

    PubMed  Google Scholar 

  • Nagashima A, Hanaoka M, Motohashi R, Seki M, Shinozaki K, Kanamaru K, Takahashi H, Tanaka K (2004a) DNA microarray analysis of plastid gene expression in Arabidopsis mutant deficient in a plastid transcription factor sigma, SIG2. Biosci Biotechnol Biochem 68:694–704

    Google Scholar 

  • Nagashima A, Hanaoka M, Shikanai T, Fujiwara M, Kanamaru K, Takahashi H, Tanaka K (2004b) The multiple-stress responsive plastid sigma factor, SIG5, directs activation of the psbD blue light-responsive promoter (LRP) in Arabidopsis thaliana. Plant Cell Physiol 45:357–368

    Google Scholar 

  • Nakahira Y, Baba K, Yoneda A, Shiina T, Toyoshima Y (1998) Circadian-regulated transcription of the psbD light-responsive promoter in wheat chloroplasts. Plant Physiol 118:1079–1088

    PubMed  Google Scholar 

  • Oikawa K, Tanaka K, Takahashi H (1998) Two types of differently photo-regulated nuclear genes that encode sigma factors for a chloroplast RNA polymerase in the red alga Cyanidium caldarium strain RK-1. Gene 210:277–285

    PubMed  Google Scholar 

  • Oikawa K, Fujiwara M, Nakazato E, Tanaka K, Takahashi H (2000) Characterization of two plastid sigma factor, SigA1 and SigA2, that mainly function in mature chloroplasts in Nicotiana tabacum. Gene 261:221–228

    PubMed  Google Scholar 

  • Orozco EM Jr, Chen L-J, Eilers RJ (1990) The divergently transcribed rbcL and atpB genes of tobacco plastid DNA are separated by nineteen base pairs. Curr Genet 17:65–71

    PubMed  Google Scholar 

  • Paget MS, Helmann JD (2003) The sigma70 family of sigma factors. Genome Biol 4:203

    PubMed  Google Scholar 

  • Paule MR, White RJ (2000) Survey and summary: transcription by RNA polymerases I and III. Nucleic Acids Res 28:1283–1298

    PubMed  Google Scholar 

  • Privat I, Hakimi MA, Buhot L, Favory JJ, Lerbs-Mache S (2003) Characterization of Arabidopsis plastid sigma-like transcription factors SIG1, SIG2 and SIG3. Plant Mol Biol 51:385–399

    PubMed  Google Scholar 

  • Rajkumari K, Kusano S, Ishihama A, Mizuno T, Gowrishankar J (1996) Effects of H-NS and potassium glutamate on sigmaS- and sigma70-directed transcription in vitro from osmotically regulated P1 and P2 promoters of proU in Escherichia coli. J Bacteriol 178:4176–4181

    PubMed  Google Scholar 

  • Sen R, Nagai H, Hernandez VJ, Shimamoto N (1998) Reduction in abortive transcription from the lambdaPR promoter by mutations in region 3 of the sigma70 subunit of Escherichia coli RNA polymerase. J Biol Chem 273:9872–9877

    PubMed  Google Scholar 

  • Severinov K, Fenyo D, Severinova E, Mustaev A, Chait BT, Goldfarb A, Darst SA (1994) The sigma subunit conserved region 3 is part of ‘5’-face’ of active center of Escherichia coli RNA polymerase. J Biol Chem 269:20826–20828

    PubMed  Google Scholar 

  • Sharma UK, Chatterji D (2006) Both regions 4.1 and 4.2 of E. coli sigma(70) are together required for binding to bacteriophage T4 AsiA in vivo. Gene 376:133–143

    PubMed  Google Scholar 

  • Sharp MM, Chan CL, Lu CZ, Marr MT, Nechaev S, Merritt EW, Severinov K, Roberts JW, Gross CA (1999) The interface of sigma with core RNA polymerase is extensive, conserved, and functionally specialized. Genes Dev 13:3015–3026

    PubMed  Google Scholar 

  • Shematorova EK, Shpakovski GV (2002) Structure and functions of eukaryotic nuclear DNA-dependent RNA polymerase I. Mol Biol (Mosk) 36:1–17

    Google Scholar 

  • Shuler MF, Tatti KM, Wade KH, Moran CP Jr (1995) A single amino acid substitution in sigma E affects its ability to bind core RNA polymerase. J Bacteriol 177:3687–3694

    PubMed  Google Scholar 

  • Stegemann S, Hartmann S, Ruf S, Bock R (2003) High-frequency gene transfer from the chloroplast genome to the nucleus. Proc Natl Acad Sci USA 100:8828–8833

    PubMed  Google Scholar 

  • Suzuki JY, Ytterberg AJ, Beardslee TA, Allison LA, Wijk KJ, Maliga P (2004) Affinity purification of the tobacco plastid RNA polymerase and in vitro reconstitution of the holoenzyme. Plant J 40:164–172

    PubMed  Google Scholar 

  • Tan S, Troxler RF (1999) Characterisation of two chloroplast RNA polymerase sigma factors from Zea mays: Photoregulation and differential expression. Proc Natl Acad Sci USA 96:5316–5321

    PubMed  Google Scholar 

  • Tanaka K, Oikawa K, Ohta N, Kuroiwa H, Kuroiwa T, Takahashi H (1996) Nuclear encoding of a chloroplast RNA polymerase sigma subunit in a red alga. Science 272:1932–1935

    PubMed  Google Scholar 

  • Tanaka K, Tozawa Y, Mochizuki N, Shinozaki K, Nagatani A, Wakasa K, Takahashi H (1997) Characterization of three cDNA species encoding plastid RNA polymerase sigma factors in Arabidopsis thaliana: evidence for the sigma factor heterogeneity in higher plant plastids. FEBS Lett 413:309–313

    PubMed  Google Scholar 

  • Thum KE, Kim M, Morishige DT, Eibl C, Koop H-U, Mullet JE (2001) Analysis of barley chloroplast psbD light responsive promoter elements in transplastomic tobacco. Plant Mol Biol 47:353–366

    PubMed  Google Scholar 

  • Tiller K, Link G (1993a) Phosphorylation and dephosphorylation affect functional characteristics of chloroplast and etioplast transcription systems from mustard (Sinapis alba L.). EMBO J 12:1745–1753

    Google Scholar 

  • Tiller K, Link G (1993b) Sigma-like transcription factors from mustard (Sinapis alba L.) etioplast are similar in size to, but functionally distinct from, their chloroplast counterparts. Plant Mol Biol 21:503–513

    Google Scholar 

  • Tiller K, Eisermann A, Link G (1991) The chloroplast transcription apparatus from mustard (Sinapis alba L.). Evidence for three different transcription factors which resemble bacterial sigma factors. Eur J Biochem 198:93–99

    PubMed  Google Scholar 

  • Tozawa Y, Tanaka K, Takahashi H, Wakasa K (1998) Nuclear encoding of a plastid sigma factor in rice and its tissue- and light-dependent expression. Nucleic Acids Res 26:415–419

    PubMed  Google Scholar 

  • Troxler RF, Zhang F, Hu J, Bogorad L (1994) Evidence that sigma factors are components of chloroplast RNA polymerase. Plant Physiol 104:753–759

    PubMed  Google Scholar 

  • Tsunoyama Y, Morikawa K, Shiina T, Toyoshima Y (2002) Blue light specific and differential expression of a plastid sigma factor, Sig5 in Arabidopsis thaliana. FEBS Lett 516:225–228

    PubMed  Google Scholar 

  • Tsunoyama Y, Ishizaki Y, Morikawa K, Kobori M, Nakahira Y, Takeba G, Toyoshima Y, Shiina T (2004) Blue light-induced transcription of plastid-encoded psbD gene is mediated by a nuclear-encoded transcription initiation factor, AtSig5. Proc Natl Acad Sci USA 101:3304–3309

    PubMed  Google Scholar 

  • Vassylyev DG, Sekine S, Laptenko O, Lee J, Vassylyeva MN, Borukhov S, Yokoyama S (2002) Crystal structure of a bacterial RNA polymerase holoenzeme at 2.6 Å resolution. Nature 417:712–719

    PubMed  Google Scholar 

  • Wilson C, Dombroski AJ (1997) Region 1 of sigma70 is required for efficient isomerization and initiation of transcription by Escherichia coli RNA polymerase. J Mol Biol 267:60–74

    PubMed  Google Scholar 

  • Yao J, Roy-Chowdhury S, Allison LA (2003) AtSig5 is an essential nucleus-encoded Arabidopsis sigma-like factor. Plant Physiol 132:739–747

    PubMed  Google Scholar 

  • Young BA, Gruber TM, Gross CA (2002) Views of transcription initiation. Cell 109:417–420

    PubMed  Google Scholar 

  • Zhou YN, Walter WA, Gross CA (1992) A mutant sigma 32 with a small deletion in conserved region 3 of sigma has reduced affinity for core RNA polymerase. J Bacteriol 174:5005–5012

    PubMed  Google Scholar 

Download references

Acknowledgments

I thank Prof. K. Tanaka for the thorough reading of the manuscript and for the helpful discussion, and A.M.Murygina for the assistance in manuscript preparation. This study was partly supported by the Grant from the President of Russian Federation for Leading Scientific Schools (NSh-1785.2003.4) and by the Russian Foundation for Basic Research (project nos. 04-04-48247, 04-04-81003 and 06-04-81024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene A. Lysenko.

Additional information

Communicated by P.P. Kumar.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lysenko, E.A. Plant sigma factors and their role in plastid transcription. Plant Cell Rep 26, 845–859 (2007). https://doi.org/10.1007/s00299-007-0318-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-007-0318-7

Keywords

Navigation