Skip to main content
Log in

Clues about the ancestral roles of plant MADS-box genes from a functional analysis of moss homologues

  • Cell Biology and Morphogenesis
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Classic MIKC-type MADS-box genes (MIKC c genes) are indispensable elements in the genetic programming of pattern formation, including the segmental organisation of angiosperm flowers, in seed plants. Since little is known about the functions of MIKC c genes in non-seed plants, a functional analysis of moss MIKC c homologues was performed using the genetically amenable, simple model plant, Physcomitrella patens. Expression of moss homologues was knocked down using an antisense RNA approach or abolished by generating transformants with gene knockouts. The knocked down (“antisense”) transformants displayed a multifaceted mutant phenotype comprising delayed gametangia formation, diminished sporophyte yield and, in the most extremely affected cases, abnormal sporophyte development and altered leaf morphogenesis. Knocked out transformants were phenotypically normal. Analysis of in situ MIKC c gene expression using transgenic strains containing MIKC c promoter–GUS fusions showed that these genes are generally expressed ubiquitously in vegetative and reproductive tissues. We conclude that MIKC c genes play significant roles in morphogenetic programming of the moss. Functional redundancy characterises some members of the gene group. Our findings provide clues concerning the ancestral roles of some MIKC c genes that may be represented in the genomes of diverse extant plant taxa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AMV:

Alfalfa mosaic virus

CaMV:

Cauliflower mosaic virus

DIG:

Digoxigenin

GUS:

β-Glucuronidase

gDNA:

Genomic deoxyribonucleic acid

HPT:

Hygromycin phosphotransferase

MYA:

Million years ago

NOS-T:

Nopaline synthase transcriptional terminator

NPT:

Neomycin phosphotransferase

Paba:

P-Aminobenzoic acid

RAGE:

Rapid amplification of genomic ends

References

  • Alvarez-Buylla ER, Liljegren SJ, Pelaz S, Gold SE, Burgeff C, Ditta GS, Vergara-Silva R, Yanofsky MF (2000) MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. Plant J 24:457–466

    Article  PubMed  CAS  Google Scholar 

  • Angenent GC, Colombo L (1996) Molecular control of ovule development. Trends Plant Sci 1:228–232

    Google Scholar 

  • Ashton NW, Champagne CEM, Weiler T, Verkoczy LK (2000) The bryophyte Physcomitrella patens replicates extrachromosomal transgenic elements. New Phytol 146:391–402

    Article  Google Scholar 

  • Ashton NW, Cove DJ (1977) The isolation and preliminary characterization of auxotrophic and analogue-resistant mutants of the moss, Physcomitrella patens. Mol Gen Genet 154:87–95

    Article  Google Scholar 

  • Ashton NW, Raju MVS (2000) The distribution of gametangia on gametophores of Physcomitrella (Aphanoregma) patens in culture. J Bryol 22:9–12

    Google Scholar 

  • Ashton NW, Schulze A, Hall P, Bandurski RS (1985) Estimation of indole-3-acetic acid in gametophytes of the moss, Physcomitrella patens. Planta 164:142–144

    Article  PubMed  CAS  Google Scholar 

  • Becker A, Theißen G (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylog Evol 29:464–489

    Article  CAS  Google Scholar 

  • Becker A, Winter K-U, Meyer B, Saedler H, Theißen G (2000) MADS-box gene diversity in seed plants 300 million years ago. Mol Biol Evol 17:1425–1434

    PubMed  CAS  Google Scholar 

  • Bouché N, Bouchez D (2001) Arabidopsis gene knockout: phenotypes wanted. Curr Opin Plant Biol 4:111–117

    Article  PubMed  Google Scholar 

  • Cavener DR, Ray SC (1991) Eukaryotic start and stop translation sites. Nucleic Acids Res 19:3185–3192

    Article  PubMed  CAS  Google Scholar 

  • Champagne CEM, Ashton NW (2001) Ancestry of KNOX genes revealed by bryophyte (Physcomitrella patens) homologs. New Phytol 150:23–36

    Article  CAS  Google Scholar 

  • Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37

    Article  PubMed  CAS  Google Scholar 

  • Courtice GRM, Ashton NW, Cove DJ (1978) Evidence for the restricted passage of metabolites into the sporophyte of the moss, Physcomitrella patens. J Bryol 10:191–198

    Google Scholar 

  • De Bodt S, Raes J, Florquin K, Rombauts S, Rouzé P, Theißen G, Van de Peer Y (2003a) Genome-wide structural annotation and evolutionary analysis of the type I MADS-box genes in plants. J Mol Evol 56:573–586

    Article  PubMed  CAS  Google Scholar 

  • De Bodt S, Raes J, Van de Peer Y, Theißen G (2003b) And then there were many: MADS goes genomic. Trends Plant Sci 8(10):475–483

    Article  PubMed  CAS  Google Scholar 

  • Engel PP (1968) The induction of biochemical and morphological mutants in the moss Physcomitrella patens. Amer J Bot 55:438–446

    Article  CAS  Google Scholar 

  • Ferrándiz C, Gu Q, Martiensson R, Yanofsky MF (2000) Redundant regulation of meristem identity and plant architecture by FRUITFUL, APETALA1 and CAULIFLOWER. Development 127:725–734

    PubMed  Google Scholar 

  • Grimsley NH, Ashton NW, Cove DJ (1977) The production of somatic hybrids by protoplast fusion in the moss, Physcomitrella patens. Mol Gen Genet 154:97–100

    Article  CAS  Google Scholar 

  • Hasebe M, Wen C-K, Kato M, Banks JA (1998) Characterization of MADS homeotic genes in the fern Ceratopteris richardii. PNAS 95:6222–6227

    Article  PubMed  CAS  Google Scholar 

  • Henschel K, Kofuji R, Hasebe M, Saedler H, Münster T, Theißen G (2002) Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patens. Mol Biol Evol 19:801–814

    PubMed  CAS  Google Scholar 

  • Hohe A, Egener T, Lucht JM, Holtorf H, Reinhard C, Schween G, Reski R (2004) An improved and highly standardized transformation procedure allows efficient production of single and multiple targeted gene-knockouts in a moss, Physcomitrella patens. Curr Genet 44:339–347

    Article  PubMed  CAS  Google Scholar 

  • Hohe A, Rensing A, Mildner M, Lang D, Reski R (2002) Day length and temperature strongly influence sexual reproduction and expression of a novel MADS-box gene in the moss Physcomitrella patens. Plant Biol 4:595–602

    Article  CAS  Google Scholar 

  • Jager M, Hassanin A, Manuel M, Le Guyader H, Deutsch J (2003) MADS-box genes in Ginkgo biloba and the evolution of the AGAMOUS family. Mol Biol Evol 20:842–854

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Kamisugi Y, Cuming AC, Cove DJ (2005) Parameters determining the efficiency of gene targeting in the moss Physcomitrella patens. Nucleic Acids Res 33(19):e173

    Article  PubMed  CAS  Google Scholar 

  • Kamisugi Y, Schlink K, Rensing SA, Schween G, von Stackelberg M, Cuming AC, Reski R, Cove DJ (2006) The mechanism of gene targeting in Physcomitrella patens: homologous recombination, concatenation and multiple integration. Nucleic Acids Res 34:6205–6214

    Article  PubMed  CAS  Google Scholar 

  • Knight CD, Cove DJ, Boyd PJ, Ashton NW (1988) The isolation of biochemical and developmental mutants in Physcomitrella patens. In: Glime JM (ed) Methods in bryology. Proceedings of the bryological methods workshop, Mainz, 17–23 July, 1987. Hattori Botanical Laboratory, Nichinan, pp 47–58

  • Krogan NT, Ashton NW (2000) Ancestry of plant MADS-box genes revealed by bryophyte (Physcomitrella patens) homologues. New Phytol 147:505–517

    Article  CAS  Google Scholar 

  • Liljegren SJ, Ditta GS, Eshed Y, Savidge B, Bowman JL, Yanofsky MF (2000) SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404:766–770

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Baird V (2001) Rapid amplification of genomic DNA ends by Nla III partial digestion and polynucleotide tailing. Plant Mol Biol Rep 19:261–267

    Google Scholar 

  • Mouradov A, Glassick TV, Hamdorf BA, Murphy LC, Marla SS, Yang Y, Teasdale R (1998) Family of MADS-box genes expressed early in male and female reproductive structures of Monterey pine. Plant Physiol 117:55–61

    Article  PubMed  CAS  Google Scholar 

  • Münster T, Pahnke J, Di Rosa A, Kim JT, Martin W, Saedler H, Theißen G (1997) Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants. PNAS 94:2415–2420

    Article  PubMed  Google Scholar 

  • Münster T, Faigl W, Saedler H, Theißen G (2002) Evolutionary aspects of MADS-box genes in the eusporangiate fern Ophioglossum. Plant Biol 4:474–483

    Article  Google Scholar 

  • Nam J, dePamphilis CW, Ma H, Nei M (2003) Antiquity and evolution of the MADS-box gene family controlling flower development in plants. Mol Biol Evol 20:1435–1447

    Article  PubMed  CAS  Google Scholar 

  • Ng M, Yanofsky MF (2001) Function and evolution of the plant MADS-box gene family. Nat Rev Genet 2:186–195

    Article  PubMed  CAS  Google Scholar 

  • Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200–203

    Article  PubMed  CAS  Google Scholar 

  • Purugganan MD (1997) The MADS-box floral homeotic gene lineages predate the origin of seed plants: phylogenetic and molecular clock estimates. J Mol Evol 45:392–396

    Article  PubMed  CAS  Google Scholar 

  • Riechmann JL, Meyerowitz EM (1997) MADS domain proteins in plant development. Biol Chem 378:1079–1101

    Article  PubMed  CAS  Google Scholar 

  • Riese M, Faigl W, Quodt V, VerelstA, Matthes A, Saedler H, Münster T (2005) Isolation and characterization of new MIKC*-type MADS-box genes from the moss Physcomitrella patens. Plant Biol 7:307–314

    Article  PubMed  CAS  Google Scholar 

  • Rutledge R, Regan S, Nicolas O, Fobert P, Cote C, Bosnich W, Kauffeldt C, Sunohara G, Seguin A, Stewart D (1998) Characterization of an AGAMOUS homologue from the conifer black spruce (Picea mariana) that produces floral homeotic conversions when expressed in Arabidopsis. Plant J 15:625–634

    Article  PubMed  CAS  Google Scholar 

  • Stewart WN, Rothwell GW (1993) Paleobotany and the evolution of plants, 2nd edn. Cambridge University Press, Cambridge, pp 521

  • Sundström J, Engström P (2002) Conifer reproductive development involves B-type MADS-box genes with distinct and different activities in male organ primordia. Plant J 31:161–169

    Article  PubMed  Google Scholar 

  • Svensson ME, Engström P (2002) Closely related MADS-box genes in club moss (Lycopodium) show broad expression patterns and are structurally similar to, but phylogenetically distinct from, typical seed plant MADS-box genes. New Phytol 154:439–450

    Article  CAS  Google Scholar 

  • Tanabe Y, Hasebe M, Sekimoto H, Nishiyama T, Kitani M, Henschel K, Münster T, Theißen G, Nozaki H, Ito M (2005) Characterization of MADS-box genes in charophycean green algae and its implication for the evolution of MADS-box genes. PNAS 102:2436–2441

    Article  PubMed  CAS  Google Scholar 

  • Tandre K, Albert VA, Sundås A, Engström P (1995) Conifer homologues to genes that control floral development in angiosperms. Plant Mol Biol 27:69–78

    Article  PubMed  CAS  Google Scholar 

  • Theiβen G (1997) Secret life of genes. Nature 415:741

    Google Scholar 

  • Theißen G (2001) Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4:75–85

    Article  PubMed  Google Scholar 

  • Theißen G, Becker A, Di Rosa A, Kanno A, Kim JT, Münster T, Winter K-U, Saedler H (2000) A short history of MADS-box genes in plants. Plant Mol Biol 42:115–149

    Article  PubMed  Google Scholar 

  • Theißen G, Kim J, Saedler H (1996) Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J Mol Evol 43:484–516

    PubMed  Google Scholar 

  • Theißen G, Münster T, Henschel K (2001) Why don’t mosses flower? New Phytol 150:1–8

    Article  Google Scholar 

  • Theißen G, Saedler H (1995) MADS-box genes in plant ontogeny and phylogeny: Haeckel’s ‘biogenetic’ law revisited. Curr Opin Genet Dev 5:628–639

    Article  PubMed  Google Scholar 

  • Theißen G, Saedler H (2001) Floral quartets. Nature 409:469–471

    Article  PubMed  Google Scholar 

  • US Department of Energy, Joint Genome Institute, Cuming A, Cove D, Nishiyama T, Rensing S, Mishler BD, Hasebe M, Quatrano RS, Reski R (2006) Physcomitrella patens genome sequence v1.0. http://shake.jgi-psf.org/Phypa1/Phypa1.home.html

  • Weigel D, Meyerowitz EM (1994) The ABCs of floral homeotic genes. Cell 78:203–209

    Article  PubMed  CAS  Google Scholar 

  • Winter K-U, Becker A, Münster T, Kim JT, Saedler H, Theißen G (1999) MADS-box genes reveal that gnetophytes are more closely related to conifers than to flowering plants. PNAS 96:7342–7347

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, Tan HTW, Pwee K-H, Kumar PP (2004) Conservation of class C function of floral organ development during 300 million years of evolution from gymnosperms to angiosperms. Plant J 37:566–577

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by a Natural Sciences and Engineering Research Council of Canada (NSERC) operating grant awarded to N.W. Ashton and NSERC postgraduate scholarships provided to S.D. Singer (PGSA & B) and N.T. Krogan (PGSA). We wish to thank W. Chapco for invaluable advice concerning statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. W. Ashton.

Additional information

Communicated by R. Reski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material S1 to S7

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singer, S.D., Krogan, N.T. & Ashton, N.W. Clues about the ancestral roles of plant MADS-box genes from a functional analysis of moss homologues. Plant Cell Rep 26, 1155–1169 (2007). https://doi.org/10.1007/s00299-007-0312-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-007-0312-0

Keywords

Navigation