Skip to main content
Log in

Regeneration of roots from callus reveals stability of the developmental program for determinate root growth in Sonoran Desert Cactaceae

  • Cell Biology and Morphogenesis
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

In some Sonoran Desert Cactaceae the primary root has a determinate root growth: the cells of the root apical meristem undergo only a few cell division cycles and then differentiate. The determinate growth of primary roots in Cactaceae was found in plants cultivated under various growth conditions, and could not be reverted by any treatment tested. The mechanisms involved in root meristem maintenance and determinate root growth in plants remain poorly understood. In this study, we have shown that roots regenerated from the callus of two Cactaceae species, Stenocereus gummosus and Ferocactus peninsulae, have a determinate growth pattern, similar to that of the primary root. To demonstrate this, a protocol for root regeneration from callus was established. The determinate growth pattern of roots regenerated from callus suggests that the program of root development is very stable in these species. These findings will permit future analysis of the role of certain Cactaceae genes in the determinate pattern of root growth via the regeneration of transgenic roots from transformed calli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BA:

6-Benzylaminopurine

CIM:

Callus induction medium

CIMs:

Callus induction media

MS:

Murashige and Skoog medium

NAA:

1-Naphthaleneacetic acid

Nx :

NAA x mg/l

NxBy :

NAA x mg/l, BA y mg/l

RAM:

Root apical meristem

RRM:

Root regeneration medium

RRMs:

Root regeneration media

References

  • Boke NH (1979) Root glochids and root spurs of Opuntia arenaria (Cactaceae). Am J Bot 69:1085–1092

    Article  Google Scholar 

  • Boyle TH (1997) The genetics of self-incompatibility in the genus Schlumbergera (Cactaceae). J Hered 88:209–214

    Google Scholar 

  • Clark-Tapia R, Molina-Freaner F (2003) The genetic structure of a columnar cactus with a disjunct distribution: Stenocereus gummosus in the Sonoran Desert. Heredity 90:443–450

    Article  PubMed  CAS  Google Scholar 

  • Dubrovsky JG (1997) Determinate primary-root growth in seedlings of Sonoran Desert Cactaceae; its organization, cellular basis, and ecological significance. Planta 203:85–92

    Article  CAS  Google Scholar 

  • Dubrovsky JG, Gómez-Lomelí LF (2003) Water deficit accelerates determinate developmental program of the primary root and does not affect lateral root initiation in a Sonoran Desert cactus (Pachycereus pringlei, Cactaceae). Am J Bot 90:823–831

    Google Scholar 

  • Dubrovsky JG, North GB (2002) Root structure and function. In: Nobel PS (ed) Cacti biology and uses. University of California Press, Berkeley, pp 41–56

    Google Scholar 

  • Dubrovsky JG, Gambetta GA, Hernández-Barrera A, Shishkova S, González I (2006) Lateral root initiation in Arabidopsis: developmental window, spatial patterning, density, and predictability. Ann Bot 97:903–915. DOI: 10.1093/aob/mcj604

    Article  PubMed  CAS  Google Scholar 

  • Ivanov VB (1994) Root growth responses to chemicals. Sov Sci Rev D Physicochem Biol 13:1–70

    Google Scholar 

  • Kerk NM, Feldman LJ (1994) The quiescent center in roots of maize: initiation, maintenance and the role in organization of the root apical meristem. Protoplasma 183:100–106

    Article  CAS  Google Scholar 

  • Lutova LA, Bondarenko LV, Buzovkina IS, Levashina EA, Tikhodeev ON, Hodjaiova LT, Sharova NV, Shishkova SO (1994) The influence of plant genotype on regeneration processes. Russ J Genet 30:928–936

    Google Scholar 

  • Malamy J, Benfey P (1997) Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124:33–44

    PubMed  CAS  Google Scholar 

  • McIntosh ME (2002) Plant size, breeding system, and limits to reproductive success in two sister species of Ferocactus (Cactaceae) Plant Ecol 162:273–288

    Article  Google Scholar 

  • Moebius-Goldammer KG, Mata-Rosas M, Chavez-Avilla VM (2003) Organogenesis and somatic embryogenesis in Ariocarpus kotschoubeyanus (Lem.) K. Schum. (Cactaceae), an endemic and endangered Mexican species. In Vitro Cell Dev Biol Plant 39:388–393

    Google Scholar 

  • Newell C (2000) Plant transformation technology: developments and applications. Mol Biotechnol 16:53–65

    Article  PubMed  CAS  Google Scholar 

  • Perez-Molpe-Bach E, Pérez-Reyes ME, Davila-Figueroa CA, Villalobos-Amador E (2002) In vitro propagation of three species of columnar cacti from the Sonoran Desert. Hortiscience 37:693–696

    Google Scholar 

  • Rodríguez-Rodríguez F, Shishkova S, Napsucialy-Mendivil S, Dubrovsky JG (2003) Apical meristem organization and lack of quiescent center establishment in Cactaceae roots with determinate growth. Planta 217:849–857

    Article  PubMed  CAS  Google Scholar 

  • Rubluo A, Marín-Hernández T, Duval K, Vargas A, Marquez-Guzmán J (2002) Auxin induced morphogenetic responses in long-term in vitro subcultured Mammillaria san-angelensis Sanchez-Mejorada (Cactaceae). Sci Hortic 95:341–349

    Article  CAS  Google Scholar 

  • Sánchez-Calderón L, López-Bucio J, Chacón-López A, Cruz-Ramírez A, Nieto-Jacobo F, Dubrovsky JG, Herrera-Estrella L (2005) Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana. Plant Cell Physiol 46:174–184

    Article  PubMed  CAS  Google Scholar 

  • Sharma VK, Hansch R, Mendel RR, Schulze J (2005) Mature embryo axis-based high frequency somatic embryogenesis and plant regeneration from multiple cultivars of barley (Hordeum vulgare L.). J Exp Bot 56:1913–1922

    Article  PubMed  CAS  Google Scholar 

  • Shishkova S, Dubrovsky JG (2005) Developmental programmed cell death in primary root of Sonoran Desert Cactaceae. Am J Bot 92:1590–1594

    Google Scholar 

  • Skene KR, Kierans M, Sprent JI, Raven JA (1996) Structural aspects of cluster root development and their possible significance for nutrient acquisition in Grevillea robusta (Proteaceae). Ann Bot 77:443–451

    Article  Google Scholar 

  • Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol 11:118–140

    Google Scholar 

Download references

Acknowledgments

The authors thank S. Napsucialy-Mendivil for excellent technical assistance, A. Martínez for computer assistance, N. Doktor for help with figures, M. Potapova and M. Matvienko for critical reading of the manuscript. This work was partially supported by DGAPA-PAPIIT (Universidad Nacional Autónoma de México) project IN227206.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Shishkova.

Additional information

Communicated by W. Harwood

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shishkova, S., García-Mendoza, E., Castillo-Díaz, V. et al. Regeneration of roots from callus reveals stability of the developmental program for determinate root growth in Sonoran Desert Cactaceae. Plant Cell Rep 26, 547–557 (2007). https://doi.org/10.1007/s00299-006-0269-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-006-0269-4

Keywords

Navigation