Skip to main content
Log in

Properties of plasma membrane H+-ATPase in salt-treated Populus euphratica callus

  • Physiology and Biochemistry
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The plasma membrane (PM) vesicles from Populus euphratica (P. euphratica) callus were isolated to investigate the properties of the PM H+-ATPase. An enrichment of sealed and oriented right-side-out PM vesicles was demonstrated by measurement of the purity and orientation of membrane vesicles in the upper phase fraction. Analysis of pH optimum, temperature effects and kinetic properties showed that the properties of the PM H+-ATPase from woody plant P. euphratica callus were consistent with those from herbaceous species. Application of various thiol reagents to the reaction revealed that reduced thiol groups were essential to maintain the PM H+-ATPase activity. In addition, there was increased H+-ATPase activity in the PM vesicles when callus was exposed to NaCl. Western blotting analysis demonstrated an enhancement of H+-ATPase content in NaCl-treated P. euphratica callus compared with the control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

P. euphratica :

Populus euphratica

PM:

Plasma membrane

Triton X-100:

T-octyphenoxypoly-ethoxy ethanol

References

  • Arango M, Gévaudant F, Oufattole M, Boutry M (2003) The plasma membrane proton pump-ATPase: the significance of gene subfamilies. Planta 216:355–365

    PubMed  CAS  Google Scholar 

  • Baxter I, Tchieu J, Sussman MR, Boutry M, Palmgren MG, Gribskov M, Haeper JF, Axelsen KB (2003) Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice. Plant Physiol 132:618–628

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Braun Y, Hassidim M, Lerner H, Reinhold L (1986) Salinity during growth modulates the proton pump in the halophyte Atriplex nummularia. Plant Physiol 81:1050–1056

    PubMed  CAS  Google Scholar 

  • Buckhout TJ, Bell PF, Luster DG, Chaney RL (1989) Iron-stress induced redox activity in tomato (Lycopersicum esculentum Mill.) is localized on the plasma membrane. Plant Physiol 90:151–156

    PubMed  CAS  Google Scholar 

  • Chen YN, Wang Q, Ruan X, Li WH, Chen YP (2004) Physiological response of Populus euphratica to artificial water-recharge of the lower reaches of tarim river. Acta Bot Sin 46:1393–1401

    Google Scholar 

  • Cosgrove DJ (1997) Relaxation in a high-stress environment: the molecular bases of extensible cell walls and cell enlargement. Plant Cell 9:1031–1041

    Article  PubMed  CAS  Google Scholar 

  • Dean RT, Fu S, Stocker R, Davies MJ (1997) Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 324:1–18

    PubMed  CAS  Google Scholar 

  • Dracup M (1991) Increasing salt tolerance of plants through cell culture requires greater understanding of tolerance mechanisms. Aust J Plant Physiol 18:1–15

    Article  CAS  Google Scholar 

  • Ghezzi P (2005) Oxidoreduction of protein thiols in redox regulation. Biochem Soc T 33:1378–1381

    Article  CAS  Google Scholar 

  • Gu RS, Fonseca S, Puskás LG Jr LH, Zvara Á, Dudits D, Pais MS (2004) Transcript identification and profiling during salt stress and recovery of Populus euphratica. Tree Physiol 24:265–276

    PubMed  CAS  Google Scholar 

  • Hernández A, Cooke DT, Clarkson DT (1994) Lipid composition and proton transport in Penicillium cyclopium and Ustilago maydis plasma membrane vesicles isolated by two-phase partitioning. Biochim Biophys Acta 1195:103–109

    Article  PubMed  Google Scholar 

  • Hodges TK, Leonard RT, Bracker CE, Keenan TW (1972) Purification of an ion-stimulated adenosine triphosphatase from plant roots: association with plasma membranes. Proc Natl Acad Sci USA 69:3307–3311

    Article  PubMed  CAS  Google Scholar 

  • Kalampanayil BD, Wimmers LE (2001) Identification and characterization of a salt-stress-induced plasma membrane H+-ATPase in tomato. Plant Cell Environ 24:999–1005

    Article  CAS  Google Scholar 

  • Kasamo K (1986) Comparison of plasma membrane and tonoplast H+-translocating ATPase in Phaseolus mungo L. roots. Plant Cell Physiol 27:49–59

    CAS  Google Scholar 

  • Kerkeb L, Donaire JP, Rodriguez-Rosales MP (2001a) Plasma membrane H+-ATPase activity is involved in adaption of tomato calli to NaCl. Physiol Plant 111:483–490

    Article  PubMed  CAS  Google Scholar 

  • Kerkeb L, Donaire JP, Venema K, Rodriguez-Rosales MP (2001b) Tolerance to NaCl induces changes in plasma membrane lipid composition, fluidity and H+-ATPase of tomato calli. Physiol Plant 113:217–224

    Article  PubMed  CAS  Google Scholar 

  • Kjellbom P, Larsson C (1984) Preparaction and polypeptide compolisition of chlorophyii-free plasma membranes from leaves of light-grown spinach and barley. Physiol Plant 62:501–509

    Article  CAS  Google Scholar 

  • Kuhlbrandt W (2004) Biology, structure and mechanism of P-type ATPases. Nat Rev Mol Cell Biol 5:282–295

    Article  PubMed  CAS  Google Scholar 

  • Krysan PJ, Young JC, Tax F, Sussman MR (1996) Identification of transferred DNA insertions within Arabidopsis genome is involved in signal transduction and ion transport. Proc Natl Acad Sci USA 93:8145–8150

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Larsson C, Widel lS, Kjellbom P (1987) Preparation of high-purity plasma membrane. Method Enzymol 148:558–568

    CAS  Google Scholar 

  • Michelet B, Boutry M (1995) The plasma membrane H+-ATPase: a highly regulated enzyme with multiple physiological functions. Plant Physiol 108:1–6

    PubMed  CAS  Google Scholar 

  • Morsomme P, Boutry M (2000) The plant plasma membrane H+-ATPase: structure, function and regulation. Biochim Biophys Acta 1465:1–16

    Article  PubMed  CAS  Google Scholar 

  • Niu X, Bressan RA, Hasegawa PM, Pardo JM (1995) Ion homeostasis in NaCl environments. Plant Physiol 190:735–742

    Google Scholar 

  • Niu X, Narasimhan ML, Salzman RA, Bressan RA, Hasegawa PM (1993a) NaCl regulation of plasma membrane H+-ATPase gene expression in a glycophyte and a halophyte. Plant Physiol 103:713–718

    Article  PubMed  CAS  Google Scholar 

  • Niu X, Zhu JK, Narasimham ML, Bressan RA, Hasegawa PM (1993b) Plasma membrane H+-ATPase gene expression is regulated by NaCl in halophyte (Atriplex nummularia L.) cell cultures. Planta 190:433–438

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi T, Gall RS, Mayer ML (1975) An improved assay of inorganic phosphate in the presence of extralabile phosphate compounds: application to the ATPase assay in the presence of phosphocratine. Anal Biochem 69:261–267

    Article  PubMed  CAS  Google Scholar 

  • Olivari C, Meanti C, De Michelis MI, Rasi-Caldogno F (1998) Fusicoccin binding to its plasma membrane receptor and the activation of the plasma membrane H+-ATPase. Plant Physiol 116:529–537

    Article  PubMed  CAS  Google Scholar 

  • Örtegren U, Karlsson M, Blazic N, Blomqvist M, Nystrom FH, Gustavsson J, Fredman P, Strålfors P (2004) Lipids and glycosphingolipids in caveolae and surrounding plasma membrane of primary rat adipocytes. Eur J Biochem 271:2028–2036

    Article  PubMed  CAS  Google Scholar 

  • Palmgren MG (1998) Proton gradients and plant growth: role of the plasma membrane H+-ATPase. Adv Bot Res 28:1–70

    Article  CAS  Google Scholar 

  • Porillo F (2000) Regulation of plasma membrane H+-ATPase in fungi and plants. Biochim Biophys Acta 1469:31–42

    Google Scholar 

  • Reinhold L, Seiden A, Volokita M (1984) Is modulation of the rate of proton pumping a key event in osmoregulation? Plant Physiol 75: 846–849

    PubMed  CAS  Google Scholar 

  • Rober-Kleber N, Albrechtov JTP, Fleig S, Huck N, Michalke W, Wagner E, Speth V, Neuhaus G, Fischer-Iglesias C (2003) Plasma membrane H+-ATPase is involved in auxin-mediated cell elongation during wheat embryo development. Plant Physiol 131:1302–1312

    Article  PubMed  CAS  Google Scholar 

  • Serrano R (1989) Structure and function of plasma membrane ATPase. Annu Rev Plant Physiol 40:61–94

    Article  CAS  Google Scholar 

  • Shimogawara K, Usuda H (1993) A concebtrating two-phase partitioning: its application to isolation of plasma membrane from maize roots. Anal Biochem 212:381–387

    Article  PubMed  CAS  Google Scholar 

  • Sibole JV, Cabot C, Michalke W, Poschenrieder C, Barceló J (2005) Relationship between expression of the PM H+-ATPase, growth and ion partitioning in the leaves of salt-treated Medicago species. Planta 221:557–566

    Article  PubMed  CAS  Google Scholar 

  • Sondegaard TE, Schulz A, Palmgren MG (2004) Energization of transport processes in plants. Roles of the plasma membrane H+-ATPase. Plant Physiol 136:2475–2482

    Article  Google Scholar 

  • Tavakoli N, Kluge C, Golblack D, Mimuura T, Dietz KJ (2001) Reversible redox control of plant vacuolar H+-ATPase activity is related to disulfide bridge formation in subunit E as well as subunit A. Plant J 28:51–59

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Seliskar D (1998) Salinity adaptation of plasma membrane H+-ATPase in the salt marsh plant Spartina patens: ATP hydrolysis and enzyme kinetics. J Exp Bot 49:1005–1013

    Article  CAS  Google Scholar 

  • Yoshida S, Kawata T, Uemura M, Niki T (1986) Properties of plasma membrane isolated from chilling-sensitive etiolated seedlings of Vigna radiata L.. Plant Physiol 80:152–160

    Article  PubMed  CAS  Google Scholar 

  • Zhao LQ, Zhang F, Guo JK, Yang YL, Li BB, Zhang LX (2004) Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. Plant Physiol 134:849–857

    Article  PubMed  CAS  Google Scholar 

  • Zhao R, Dielen F, Kinet JM, Boutry M (2000) Cosuppression of a plasma membrane H+-ATPase isoform impairs sucrose translocation, stomatal opening, plant growth and male fertility. Plant Cell 12:535–546

    Article  PubMed  CAS  Google Scholar 

  • Zhang F, Yang YL, He WL, Zhao X, Zhang LX (2004) Effects of salinity on growth and compatible solutes of callus induced from Populus euphratica. In Vitro Cell Dev Biol Plant 40:491–494

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. R. Serrano for his generosity to provide the antibody against H+-ATPase. This work is financially supported by the Gansu project for science and technology (2GS035-A41-001-06); 2006 Gansu Natural Science project the National Natural Science Foundtion of China, major science project for eco-environment in the western regions of china (90302010); Ministry of Communications of China, Science and Technology Project for Traffic Construction in West China; Chinese postdoctoral science project (2005037164).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingli Yang.

Additional information

Communicated by R. J. Rose

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Zhang, F., Zhao, M. et al. Properties of plasma membrane H+-ATPase in salt-treated Populus euphratica callus. Plant Cell Rep 26, 229–235 (2007). https://doi.org/10.1007/s00299-006-0220-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-006-0220-8

Keywords

Navigation