Skip to main content
Log in

Use of an inducible reporter gene system for the analysis of auxin distribution in the moss Physcomitrella patens

  • Cell Biology and Morphogenesis
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The plant hormone auxin plays a major role in a variety of growth and developmental responses, even in the more ancient plants—for example, cell differentiation in mosses. Nevertheless, almost nothing is known about the distribution of auxin during moss development. To address this question, we characterised auxin distribution in the moss Physcomitrella patens using auxin-inducible reporter gene systems. Stable transgenic Physcomitrella plants were produced expressing the β-glucuronidase (GUS) gene driven by the auxin-inducible promoters GH3 and DR5, respectively. Both fusions showed remarkable differences with respect to auxin-induced promoter strength and expression kinetics. A detailed characterisation of the GUS expression pattern in different developmental stages revealed that the highest auxin concentrations were in dividing and ontogenetic young cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B.
Fig. 2A, B.
Fig. 3A, B.
Fig. 4A–C.
Fig. 5A, B.
Fig. 6A, B.

Similar content being viewed by others

Abbreviations

DR5:

Synthetic auxin-inducible promoter

EST:

Expressed sequence tag

GH3:

Promoter of the soybean gh3 gene

GUS:

β-Glucuronidase

NAA:

1-Naphthaleneacetic acid

2-NAA:

2-Naphthaleneacetic acid

References

  • Avsian-Kretchmer O, Cheng J-C, Chen L, Moctezuma E, Sung ZR (2002) Indoleacetic acid distribution coincides with vascular differentiation pattern during Arabidopsis leaf ontogeny. Plant Physiol 130:199–209

    Article  CAS  PubMed  Google Scholar 

  • Bopp M (2000) 50 years of the moss story. In: Progress in botany, vol 61. Springer, Berlin Heidelberg New York, pp 1–34

  • Bopp M, Atzorn R (1992a) Hormonelle Regulation der Moosentwicklung. Naturwissenschaften 79:337–346

    CAS  Google Scholar 

  • Bopp M, Atzorn R (1992b) The morphogenetic system of the moss protonema. Cryptogam Bot 3:3–10

    Google Scholar 

  • Cove DJ, Ashton NW (1984) The hormonal regulation of gametophytic development in bryophytes. In: Dyer AF, Duckett JG (eds) The experimental biology of bryophytes. Academic Press, New York, pp 177–201

  • Egener T, Granado J, Guitton M-C, Hohe A, Holtorf H, Lucht JM, Rensing S, Schlink K, Schulte J, Schween G, Zimmermann S, Duwenig E, Rak B, Reski R (2002) High frequency of phenotypic deviations in Physcomitrella patens plants transformed with a gene-disruption library. BMC Plant Biol 2:6

    Article  PubMed  Google Scholar 

  • Friml L, Palme K (2002) Polar auxin transport—old questions and new concepts? Plant Mol Biol 49:273–284

    Google Scholar 

  • Gorton BS, Eakin RE (1957) Development of the gametophyte in the moss Tortella caespitosa. Bot Gaz 119:31–38

    Article  CAS  Google Scholar 

  • Guilfoyle TJ (1999) Auxin-regulated genes and promoters. In: Hooykaas PPJ, Hall MA, Libbenga KR (eds) Biochemistry and molecular biology of plant hormones. Elsevier, New York, pp 423–459

  • Hagen G, Guilfoyle TJ (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49:373–385

    Article  CAS  PubMed  Google Scholar 

  • Hagen G, Kleinschmidt A, Guilfoyle TJ (1984) Auxin-regulated gene expression in intact soybean hypocotyl and excised hypocotyl sections. Planta 162:147–153

    CAS  Google Scholar 

  • Hagen G, Martin G, Li Y, Guilfoyle TJ (1991) Auxin-induced expression of the soybean GH3 promoter in transgenic tobacco plants. Plant Mol Biol 17:567–579

    CAS  PubMed  Google Scholar 

  • Hohe A, Schween G, Reski R (2001) Establishment of a semicontinous bioreactor culture of Physcomitrella patens for mass production of protoplasts. Acta Hortic 560:425–427

    CAS  Google Scholar 

  • Imaizumi T, Kadota A, Hasebe M, Wada M (2002) Cryptochrome light signals control development to suppress auxin sensitivity in the moss Physcomitrella patens. Plant Cell 14:373–386

    Article  CAS  PubMed  Google Scholar 

  • Johri MM, Desai S (1973) Auxin regulation of caulonema formation in moss protonema. Nat New Biol 245:223–224

    CAS  PubMed  Google Scholar 

  • Li Y, Wu YH, Hagen G, Guilfoyle TJ (1999) Expression of the auxin-inducible GH3 promoter/GUS fusion gene as a useful molecular marker for auxin physiology. Plant Cell Physiol 40:675–682

    CAS  Google Scholar 

  • Liu Z, Ulmasov T, Shi X, Hagen G, Guilfoyle TJ (1994) Soybean GH3 promoter contains multiple auxin-inducible elements. Plant Cell 6:645–657

    CAS  PubMed  Google Scholar 

  • Mathesius U, Schlaman HRM, Spaink HP, Sautter C, Rolfe BG, Djordjevic MA (1998) Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides. Plant J 14:23–34

    Article  CAS  Google Scholar 

  • Nishiyama T, Hiwatashi Y, Sakakibara K, Kato M, Hasebe M (2000) Tagged mutagenesis and gene-trap in the moss, Physcomitrella patens, by shuttle mutagenesis. DNA Res 7:9-17

    CAS  PubMed  Google Scholar 

  • Rensing SA, Rombauts S, Van de Peer Y, Reski R (2002) Moss transcriptome and beyond. Trends Plant Sci 7:535–538

    Article  CAS  PubMed  Google Scholar 

  • Reski R (1998a) Physcomitrella and Arabidopsis: the David and Goliath of reverse genetics. Trends Plant Sci 3:209–210

    Article  Google Scholar 

  • Reski R (1998b) Development, genetics and molecular biology of mosses. Bot Acta 111:1-15

    CAS  Google Scholar 

  • Reski R, Abel WO (1985) Induction of budding on chloronemata and caulonemata of the moss, Physcomitrella patens, using isopentenyladenine. Planta 165:354–358

    CAS  Google Scholar 

  • Reski R, Faust M, Wang XH, Wehe M, Abel WO (1994) Genome analysis of the moss Physcomitrella patens (Hedw.) B.S.G. Mol Gen Genet 244:352–359

    CAS  PubMed  Google Scholar 

  • Reutter K, Atzorn R, Hadeler B, Schmülling T, Reski R (1998) Expression of the bacterial ipt gene in Physcomitrella rescues mutations in budding and in plastid division. Planta 206:196–203

    CAS  Google Scholar 

  • Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle TJ, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P, Scheres B (1999) An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99:463–472

    CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Strepp R, Scholz S, Kruse S, Speth V, Reski R (1998) Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein Ftsz, an ancestral tubulin. Proc Natl Acad Sci USA 95:4368–4373

    CAS  PubMed  Google Scholar 

  • Theissen G, Münster T, Henschel K (2001) Why don´t mosses flower? New Phytol 150:1-5

    Google Scholar 

  • Töpfer R, Schell J, Steinbiss H-H (1988) Versatile cloning vectors for transient gene expression and direct gene transfer in plant cells. Nucleic Acids Res 16:8725

    Google Scholar 

  • Ulmasov T, Liu Z, Hagen G, Guilfoyle TJ (1995) Composite structure of auxin response elements. Plant Cell 7:1611–1623

    Article  CAS  PubMed  Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle TJ (1997a) ARF1, a transcription factor that binds to auxin response elements. Science 276:1865–1868

    CAS  PubMed  Google Scholar 

  • Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997b) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971

    CAS  PubMed  Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle TJ (1999) Dimerization and DNA binding of auxin response factors. Plant J 19:309–319

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft via a concerted programme on molecular analysis of phytohormone action (DFG RE 837/6). We thank Tom Guilfoyle and Jane Murfett for kindly providing the GH3::GUS- and the DR5::GUS-containing plasmids and Dr. G. Schween for carrying out the flow cytometric analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. L. Decker.

Additional information

Communicated by H. Lörz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bierfreund, N.M., Reski, R. & Decker, E.L. Use of an inducible reporter gene system for the analysis of auxin distribution in the moss Physcomitrella patens . Plant Cell Rep 21, 1143–1152 (2003). https://doi.org/10.1007/s00299-003-0646-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-003-0646-1

Keywords

Navigation