Skip to main content

Advertisement

Log in

Is biological therapy in systemic sclerosis the answer?

  • Review
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Systemic sclerosis is a systemic fibrosing disorder associated with significant morbidity and mortality, with no universally accepted disease-modifying therapy. Significant advances in the understanding of systemic sclerosis in recent years have guided the exploration of biological drugs in systemic sclerosis. In this narrative review, we summarize the published literature on biologic therapies in systemic sclerosis. A double-blind randomized trial, and an open label trial of tocilizumab (which antagonizes the interleukin 6 receptor), identified potential benefits in skin and lung fibrosis in systemic sclerosis; however, these differences failed to attain statistical significance. Two open-label trials compared rituximab (which depletes B lymphocytes) to conventional treatment/ cyclophosphamide in systemic sclerosis-associated interstitial lung disease (ILD), and revealed significant improvements in lung functions and skin disease with rituximab. Significant observational data also support the use of rituximab in skin, lung, muscle and joint manifestations of systemic sclerosis. Abatacept (which blocks T lymphocyte activation) has demonstrated utility for skin and joint disease in systemic sclerosis; a recent clinical trial failed to demonstrate benefits in improving skin thickness compared to placebo. Agents targeting type I interferons, interleukin 17 pathway, CD19 and plasma cells hold promise in systemic sclerosis; however, high-quality evidence is lacking. The results of different ongoing clinical trials targeting B lymphocytes, T lymphocytes, various cytokines (interleukins 6, 17, 4, 13, IL-1α), platelet-derived growth factor receptor, proteasome, integrins or oncostatin M may help guide future therapeutic regimens with biological agents in systemic sclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ABA:

Abatacept

ANI:

Anifrolumab

BAFF:

B cell activating factor

BEL:

Belimumab

BLys:

B lymphocyte activating factor

CI:

Confidence intervals

CTLA4:

Cytotoxic T lymphocyte associated antigen 4

DLCO:

Diffusion lung capacity for carbon monoxide

EUSTAR:

European Scleroderma Trials and Research Group

FRE:

Fresolizumab

FVC:

Forced vital capacity

GVHD:

Graft-versus-host disease

IFN:

Interferon

IL:

Interleukin

ILD:

Interstitial lung disease

INE:

Inebilizumab

MMF:

Mycophenolate mofetil

mRSS:

Modified Rodnan skin score

PDGFR:

Platelet derived growth factor receptor

RCT:

Randomized controlled trial

RTX:

Rituximab

SSc:

Systemic sclerosis

STAT3:

Signal transducer and activator of transcription 3

TOC:

Tocilizumab

TGFβ:

Transforming growth factor beta

Th:

T helper

TNFα:

Tumour necrosis factor alpha

TNFi:

TNF inhibitors

References

  1. Poudel DR, Jayakumar D, Danve A, Sehra ST, Derk CT (2018) Determinants of mortality in systemic sclerosis: a focused review. Rheumatol Int 38:1847–1858. https://doi.org/10.1007/s00296-017-3826-y

    Article  PubMed  Google Scholar 

  2. Sánchez-Cano D, Ortego-Centeno N, Callejas JL et al (2018) Interstitial lung disease in systemic sclerosis: data from the spanish scleroderma study group. Rheumatol Int 38:363–374. https://doi.org/10.1007/s00296-017-3916-x

    Article  PubMed  Google Scholar 

  3. Pattanaik D, Brown M, Postlethwaite BC, Postlethwaite AE (2015) Pathogenesis of systemic sclerosis. Front Immunol 6:272–272. https://doi.org/10.3389/fimmu.2015.00272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Varga J, Trojanowska M, Kuwana M (2017) Pathogenesis of systemic sclerosis: recent insights of molecular and cellular mechanisms and therapeutic opportunities. J Scleroderma Relat Disord 2:137–152. https://doi.org/10.5301/jsrd.5000249

    Article  Google Scholar 

  5. Ahmed S, Misra DP, Agarwal V (2019) Interleukin-17 pathways in systemic sclerosis-associated fibrosis. Rheumatol Int 39:1135–1143. https://doi.org/10.1007/s00296-019-04317-5

    Article  CAS  PubMed  Google Scholar 

  6. Chakraborty D, Sumova B, Mallano T et al (2017) Activation of STAT3 integrates common profibrotic pathways to promote fibroblast activation and tissue fibrosis. Nat Commun 8:1130. https://doi.org/10.1038/s41467-017-01236-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pedroza M, To S, Assassi S, Wu M, Tweardy D, Agarwal SK (2018) Role of STAT3 in skin fibrosis and transforming growth factor beta signalling. Rheumatology (Oxford) 57:1838–1850. https://doi.org/10.1093/rheumatology/kex347

    Article  CAS  Google Scholar 

  8. Yan JF, Huang WJ, Zhao JF et al (2017) The platelet-derived growth factor receptor/STAT3 signaling pathway regulates the phenotypic transition of corpus cavernosum smooth muscle in rats. PLoS ONE 12:e0172191. https://doi.org/10.1371/journal.pone.0172191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chaturvedi S, Misra DP, Prasad N et al (2018) 5-HT2 and 5-HT2B antagonists attenuate pro-fibrotic phenotype in human adult dermal fibroblasts by blocking TGF-beta1 induced non-canonical signaling pathways including STAT3: implications for fibrotic diseases like scleroderma. Int J Rheum Dis 21:2128–2138. https://doi.org/10.1111/1756-185x.13386

    Article  CAS  PubMed  Google Scholar 

  10. Gasparyan AY, Ayvazyan L, Blackmore H, Kitas GD (2011) Writing a narrative biomedical review: considerations for authors, peer reviewers, and editors. Rheumatol Int 31:1409–1417. https://doi.org/10.1007/s00296-011-1999-3

    Article  PubMed  Google Scholar 

  11. Kitaba S, Murota H, Terao M et al (2012) Blockade of interleukin-6 receptor alleviates disease in mouse model of scleroderma. Am J Pathol 180:165–176. https://doi.org/10.1016/j.ajpath.2011.09.013

    Article  CAS  PubMed  Google Scholar 

  12. Taniguchi T, Asano Y, Fukasawa T, Yoshizaki A, Sato S (2017) Critical contribution of the interleukin-6/signal transducer and activator of transcription 3 axis to vasculopathy associated with systemic sclerosis. J Dermatol 44:967–971. https://doi.org/10.1111/1346-8138.13827

    Article  CAS  PubMed  Google Scholar 

  13. Drobyski WR, Pasquini M, Kovatovic K et al (2011) Tocilizumab for the treatment of steroid refractory graft-versus-host disease. Biol Blood Marrow Transplant 17:1862–1868. https://doi.org/10.1016/j.bbmt.2011.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Foeldvari I, Anton J, Friswell M et al (2017) Tocilizumab is a promising treatment option for therapy resistant juvenile localized scleroderma patients. J Scleroderma Relat Disord 2:203–207. https://doi.org/10.5301/jsrd.5000259

    Article  Google Scholar 

  15. Lythgoe H, Baildam E, Beresford MW, Cleary G, McCann LJ, Pain CE (2018) Tocilizumab as a potential therapeutic option for children with severe, refractory juvenile localized scleroderma. Rheumatology (Oxford) 57:398–401. https://doi.org/10.1093/rheumatology/kex382

    Article  Google Scholar 

  16. Khanna D, Denton CP, Jahreis A et al (2016) Safety and efficacy of subcutaneous tocilizumab in adults with systemic sclerosis (faSScinate): a phase 2, randomised, controlled trial. Lancet 387:2630–2640. https://doi.org/10.1016/S0140-6736(16)00232-4

    Article  CAS  PubMed  Google Scholar 

  17. Khanna D, Denton CP, Lin CJF et al (2018) Safety and efficacy of subcutaneous tocilizumab in systemic sclerosis: results from the open-label period of a phase II randomised controlled trial (faSScinate). Ann Rheum Dis 77:212–220. https://doi.org/10.1136/annrheumdis-2017-211682

    Article  CAS  PubMed  Google Scholar 

  18. Arnold MB, Khanna D, Denton CP et al (2018) Patient acceptable symptom state in scleroderma: results from the tocilizumab compared with placebo trial in active diffuse cutaneous systemic sclerosis. Rheumatology (Oxford) 57:152–157. https://doi.org/10.1093/rheumatology/kex396

    Article  Google Scholar 

  19. Denton CP, Ong VH, Xu S et al (2018) Therapeutic interleukin-6 blockade reverses transforming growth factor-beta pathway activation in dermal fibroblasts: Insights from the faSScinate clinical trial in systemic sclerosis. Ann Rheum Dis 77:1362–1371. https://doi.org/10.1136/annrheumdis-2018-213031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shima Y, Kawaguchi Y, Kuwana M (2019) Add-on tocilizumab versus conventional treatment for systemic sclerosis, and cytokine analysis to identify an endotype to tocilizumab therapy. Mod Rheumatol 29:134–139. https://doi.org/10.1080/14397595.2018.1452178

    Article  CAS  PubMed  Google Scholar 

  21. Elhai M, Meunier M, Matucci-Cerinic M et al (2013) Outcomes of patients with systemic sclerosis-associated polyarthritis and myopathy treated with tocilizumab or abatacept: a EUSTAR observational study. Ann Rheum Dis 72:1217–1220. https://doi.org/10.1136/annrheumdis-2012-202657

    Article  CAS  PubMed  Google Scholar 

  22. Kono M, Yasuda S, Kono M, Atsumi T (2018) Tocilizumab reduced production of systemic sclerosis-related autoantibodies and anti-cyclic citrullinated protein antibodies in two patients with overlapping systemic sclerosis and rheumatoid arthritis. Scand J Rheumatol 47:248–250. https://doi.org/10.1080/03009742.2017.1297482

    Article  CAS  PubMed  Google Scholar 

  23. Wakabayashi H, Kino H, Kondo M, Yamanaka K, Hasegawa M, Sudo A (2019) Efficacy of subcutaneous tocilizumab in patients with rheumatoid arthritis and systemic sclerosis overlap syndrome: a report of two cases and review of the literature. BMC Rheumatol 3:15. https://doi.org/10.1186/s41927-019-0063-x

    Article  PubMed  PubMed Central  Google Scholar 

  24. Das Neves MF, Oliveira S, Amaral MC, Alves JD (2015) Treatment of systemic sclerosis with tocilizumab. Rheumatology (Oxford) 54:371–372. https://doi.org/10.1093/rheumatology/keu435

    Article  CAS  Google Scholar 

  25. Zacay G, Levy Y (2018) Outcomes of patients with systemic sclerosis treated with tocilizumab: case series and review of the literature. Best Pract Res Clin Rheumatol 32:563–571. https://doi.org/10.1016/j.berh.2019.01.011

    Article  PubMed  Google Scholar 

  26. Fernández-Codina A, Walker KM, Pope JE (2018) Treatment algorithms for systemic sclerosis according to experts. Arthritis Rheumatol 70:1820–1828. https://doi.org/10.1002/art.40560

    Article  CAS  PubMed  Google Scholar 

  27. Khanna D, Lin CJF, Kuwana M, et al. (2018) Efficacy and safety of tocilizumab for the treatment of systemic sclerosis: results from a phase 3 randomized controlled trial [abstract]. Arthritis Rheumatol 70 (suppl 10).

  28. Murata KY, Sugie K, Takamure M, Ueno S (2002) Expression of the costimulatory molecule BB-1 and its receptors in patients with scleroderma-polymyositis overlap syndrome. J Neurol Sci 205:65–70. https://doi.org/10.1016/S0022-510X(02)00309-X

    Article  CAS  PubMed  Google Scholar 

  29. Takeuchi F, Kawasugi K, Nabeta H, Mori M, Tanimoto K (2002) Association of CTLA-4 with systemic sclerosis in Japanese patients. Clin Exp Rheumatol 20:823–828

    CAS  PubMed  Google Scholar 

  30. Ponsoye M, Frantz C, Ruzehaji N et al (2016) Treatment with abatacept prevents experimental dermal fibrosis and induces regression of established inflammation-driven fibrosis. Ann Rheum Dis 75:2142–2149. https://doi.org/10.1136/annrheumdis-2015-208213

    Article  CAS  PubMed  Google Scholar 

  31. Cutolo M, Soldano S, Montagna P et al (2018) Effects of CTLA4-Ig treatment on circulating fibrocytes and skin fibroblasts from the same systemic sclerosis patients: an in vitro assay. Arthritis Res Ther 20:157. https://doi.org/10.1186/s13075-018-1652-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Khanna D, Spino C, Johnson S et al (2020) Abatacept in early diffuse cutaneous systemic sclerosis results of a phase 2 investigator-initiated, multicenter, double-blind randomized placebo-controlled trial. Arthritis Rheumatol 72:125–136. https://doi.org/10.1002/art.41055

    Article  CAS  PubMed  Google Scholar 

  33. Chakravarty EF, Martyanov V, Fiorentino D et al (2015) Gene expression changes reflect clinical response in a placebo-controlled randomized trial of abatacept in patients with diffuse cutaneous systemic sclerosis. Arthritis Res Ther 17:159. https://doi.org/10.1186/s13075-015-0669-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wehner Fage S, Arvesen KB, Olesen AB (2018) Abatacept improves skin-score and reduces lesions in patients with localized scleroderma: a case series. Acta Derm Venereol 98:465–466. https://doi.org/10.2340/00015555-2878

    Article  Google Scholar 

  35. Stausbøl-Grøn B, Olesen AB, Deleuran B, Deleuran MS (2011) Abatacept is a promising treatment for patients with disseminated morphea profunda: presentation of two cases. Acta Derm Venereol 91:686–688. https://doi.org/10.2340/00015555-1136

    Article  PubMed  Google Scholar 

  36. De Paoli FV, Nielsen BD, Rasmussen F, Deleuran B, Søndergaard K (2014) Abatacept induces clinical improvement in patients with severe systemic sclerosis. Scand J Rheumatol 43:342–345. https://doi.org/10.3109/03009742.2013.812238

    Article  PubMed  Google Scholar 

  37. Koca SS, Isik A, Ozercan IH, Ustundag B, Evren B, Metin K (2008) Effectiveness of etanercept in bleomycin-induced experimental scleroderma. Rheumatology (Oxford) 47:172–175. https://doi.org/10.1093/rheumatology/kem344

    Article  CAS  Google Scholar 

  38. Li T, Liu Y, Xu H (2017) Successful treatment of infliximab in a patient with scleroderma: a case report. Medicine (Baltimore). 96:e6737. https://doi.org/10.1097/MD.0000000000006737

    Article  Google Scholar 

  39. Ferguson ID, Weiser P, Torok KS (2015) A case report of successful treatment of recalcitrant childhood localized scleroderma with infliximab and leflunomide. Open Rheumatol 9:30–35. https://doi.org/10.2174/18743129014090100030

    Article  CAS  Google Scholar 

  40. Bargagli E, Galeazzi M, Bellisai F, Volterrani L, Rottoli P (2008) Infliximab treatment in a patient with systemic sclerosis associated with lung fibrosis and pulmonary hypertension. Respiration 75:346–349. https://doi.org/10.1159/000090248

    Article  PubMed  Google Scholar 

  41. Diab M, Coloe JR, Magro C, Bechtel MA (2010) Treatment of recalcitrant generalized morphea with infliximab. Arch Dermatol 146:601–604. https://doi.org/10.1001/archdermatol.2010.120

    Article  PubMed  Google Scholar 

  42. Antoniou KM, Mamoulaki M, Malagari K et al (2007) Infliximab therapy in pulmonary fibrosis associated with collagen vascular disease. Clin Exp Rheumatol 25:23–28

    CAS  PubMed  Google Scholar 

  43. Lam GK, Hummers LK, Woods A, Wigley FM (2007) Efficacy and safety of etanercept in the treatment of scleroderma-associated joint disease. J Rheumatol 34:1636–1637

    PubMed  Google Scholar 

  44. Tosounidou S, Macdonald H, Situnayake D (2014) Successful treatment of calcinosis with infliximab in a patient with systemic sclerosis/myositis overlap syndrome. Rheumatology (Oxford) 53:960–961. https://doi.org/10.1093/rheumatology/ket365

    Article  Google Scholar 

  45. Denton CP, Engelhart M, Tvede N et al (2009) An open-label pilot study of infliximab therapy in diffuse cutaneous systemic sclerosis. Ann Rheum Dis 68:1433–1439. https://doi.org/10.1136/ard.2008.096123

    Article  CAS  PubMed  Google Scholar 

  46. Ranganathan P (2005) Infliximab-induced scleredema in a patient with rheumatoid arthritis. J Clin Rheumatol 11:319–322. https://doi.org/10.1097/01.rhu.0000191162.66288.27

    Article  PubMed  Google Scholar 

  47. Chimenti MS, Teoli M, Di Stefani A, Giunta A, Esposito M, Perricone R (2013) Resolution with rituximab of localized scleroderma occurring during etanercept treatment in a patient with rheumatoid arthritis. Eur J Dermatol 23:273–274. https://doi.org/10.1684/ejd.2013.1929

    Article  PubMed  Google Scholar 

  48. Ramírez J, Hernández MV, Galve J, Canete JD, Sanmartí R (2012) Morphea associated with the use of adalimumab: a case report and review of the literature. Mod Rheumatol 22:602–604. https://doi.org/10.1007/s10165-011-0550-4

    Article  PubMed  Google Scholar 

  49. Allanore Y, Devos-François G, Caramella C, Boumier P, Jounieaux V, Kahan A (2006) Fatal exacerbation of fibrosing alveolitis associated with systemic sclerosis in a patient treated with adalimumab. Ann Rheum Dis 65:834–835. https://doi.org/10.1136/ard.2005.044453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Distler JHW, Jordan S, Airò P et al (2011) Is there a role for TNF-α antagonists in the treatment of SSc? EUSTAR expert consensus development using the Delphi technique. Clin Exp Rheumatol 29:S40–S45

    PubMed  Google Scholar 

  51. Ichihara A, Jinnin M, Ihn H (2017) Treatment of psoriasis with ustekinumab improved skin tightening in systemic sclerosis. Clin Exp Rheumatol 35(Suppl 106):208–210

    PubMed  Google Scholar 

  52. Steuer AB, Peterson E, Lo Sicco K, Franks AG Jr (2019) Morphea in a patient undergoing treatment with ustekinumab. JAAD Case Rep 5:590–592. https://doi.org/10.1016/j.jdcr.2019.05.008

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ciechomska M, Skalska U (2018) Targeting interferons as a strategy for systemic sclerosis treatment. Immunol Lett 195:45–54. https://doi.org/10.1016/j.imlet.2017.10.011

    Article  CAS  PubMed  Google Scholar 

  54. Goldberg A, Geppert T, Schiopu E et al (2014) Dose-escalation of human anti-interferon-alpha receptor monoclonal antibody MEDI-546 in subjects with systemic sclerosis: a phase 1, multicenter, open label study. Arthritis Res Ther 16:R57. https://doi.org/10.1186/ar4492

    Article  PubMed  PubMed Central  Google Scholar 

  55. Guo X, Higgs BW, Bay-Jensen AC et al (2015) Suppression of T cell activation and collagen accumulation by an anti-IFNAR1 mAb, anifrolumab, in adult patients with systemic sclerosis. J Invest Dermatol 135:2402–2409. https://doi.org/10.1038/jid.2015.188

    Article  CAS  PubMed  Google Scholar 

  56. Bosello S, De Luca G, Tolusso B et al (2011) B cells in systemic sclerosis: a possible target for therapy. Autoimmun Rev 10:624–630. https://doi.org/10.1016/j.autrev.2011.04.013

    Article  CAS  PubMed  Google Scholar 

  57. Whitfield ML, Finlay DR, Murray JI et al (2003) Systemic and cell type-specific gene expression patterns in scleroderma skin. Proc Natl Acad Sci U S A 100:12319–12324. https://doi.org/10.1073/pnas.1635114100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wollheim FA (2004) Is rituximab a potential new therapy in systemic sclerosis? new evidence indicates the presence of CD20-positive B-lymphocytes in scleroderma skin. J Clin Rheumatol 10:155. https://doi.org/10.1097/01.rhu.0000129090.86550.1e

    Article  PubMed  Google Scholar 

  59. Lafyatis R, O'Hara C, Feghali-Bostwick CA, Matteson E (2007) B cell infiltration in systemic sclerosis-associated interstitial lung disease. Arthritis Rheum 56:3167–3168. https://doi.org/10.1002/art.22847

    Article  PubMed  Google Scholar 

  60. Fineschi S, Reith W, Guerne PA, Dayer JM, Chizzolini C (2006) Proteasome blockade exerts an antifibrotic activity by coordinately down-regulating type I collagen and tissue inhibitor of metalloproteinase-1 and up-regulating metalloproteinase-1 production in human dermal fibroblasts. FASEB J 20:562–564. https://doi.org/10.1096/fj.05-4870fje

    Article  CAS  PubMed  Google Scholar 

  61. Lafyatis R, Kissin E, York M et al (2009) B cell depletion with rituximab in patients with diffuse cutaneous systemic sclerosis. Arthritis Rheum 60:578–583. https://doi.org/10.1002/art.24249

    Article  PubMed  PubMed Central  Google Scholar 

  62. Smith V, Van Praet JT, Vandooren B et al (2010) Rituximab in diffuse cutaneous systemic sclerosis: an open-label clinical and histopathological study. Ann Rheum Dis 69:193–197. https://doi.org/10.1136/ard.2008.095463

    Article  CAS  PubMed  Google Scholar 

  63. Bosello S, De Santis M, Lama G et al (2010) B cell depletion in diffuse progressive systemic sclerosis: safety, skin score modification and IL-6 modulation in an up to thirty-six months follow-up open-label trial. Arthritis Res Ther 12:R54. https://doi.org/10.1186/ar2965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Daoussis D, Liossis SNC, Tsamandas AC et al (2012) Effect of long-term treatment with rituximab on pulmonary function and skin fibrosis in patients with diffuse systemic sclerosis. Clin Exp Rheumatol 30:S17–S22

    PubMed  Google Scholar 

  65. Smith V, Piette Y, Van Praet JT et al (2013) Two-year results of an open pilot study of a 2-treatment course with rituximab in patients with early systemic sclerosis with diffuse skin involvement. J Rheumatol 40:52–57. https://doi.org/10.3899/jrheum.120778

    Article  CAS  PubMed  Google Scholar 

  66. Ananieva LP, Desinova OV, Koneva OA et al (2013) Rituximab treatment for interstitial lung injury in scleroderma systematica. Naučno-Praktičeskaâ Revmatologiâ 51:514–523

    Article  Google Scholar 

  67. Moazedi-Fuerst FC, Kielhauser SM, Brickmann K et al (2014) Rituximab for systemic sclerosis: arrest of pulmonary disease progression in five cases. Results of a lower dosage and shorter interval regimen. Scand J Rheumatol 43:257–258. https://doi.org/10.3109/03009742.2013.869617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ananieva LP, Soloviyov SK, Beketova TV et al (2014) Anti-B-cell therapy at immune inflammatory rheumatic diseases: efficacy and tolerability in 229 patients. Naučno-Praktičeskaâ Revmatologiâ 52:495–506

    Article  Google Scholar 

  69. Vilela VS, Maretti GB, Gama LMdS, Costa CHd, Rufino RL, Levy RA (2016) Rituximab for the therapy of systemic sclerosis: a series of 10 cases in a single center. Rev Bras Reumatol Engl Ed 56:458–463. https://doi.org/10.1016/j.rbre.2016.06.003

    Article  PubMed  Google Scholar 

  70. Sari A, Guven D, Armagan B et al (2017) Rituximab experience in patients with long-standing systemic sclerosis-associated interstitial lung disease: a series of 14 patients. J Clin Rheumatol 23:411–415. https://doi.org/10.1097/RHU.0000000000000584

    Article  PubMed  Google Scholar 

  71. Mohammed AG, Alshihre A, Al-Homood I (2017) Rituximab treatment in patients with systemic sclerosis and interstitial lung disease. Ann Thorac Med 12:294–297. https://doi.org/10.4103/atm.ATM_30_17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Melsens K, Vandecasteele E, Deschepper E et al (2018) Two years follow-up of an open-label pilot study of treatment with rituximab in patients with early diffuse cutaneous systemic sclerosis. Acta Clin Belg 73:119–125. https://doi.org/10.1080/17843286.2017.1372244

    Article  PubMed  Google Scholar 

  73. Koneva OA, Desinova OV, Ananyeva LP, Kovaleva NV (2018) The importance of high-resolution computed tomography in evaluating the efficacy of rituximab in patients with interstitial lung disease in systemic sclerosis. Nauchno-Prakticheskaya Revmatologiya 56:591–599

    Google Scholar 

  74. Fraticelli P, Fischetti C, Salaffi F et al (2018) Combination therapy with rituximab and mycophenolate mofetil in systemic sclerosis. a single-centre case series study. Clin Exp Rheumatol 36:S142–S145

    Google Scholar 

  75. Fabri M, Hunzelmann N, Krieg T, Rubbert A (2008) Discordant response to rituximab in a systemic sclerosis patient with associated myositis. J Am Acad Dermatol 58:S127–S128. https://doi.org/10.1016/j.jaad.2007.06.010

    Article  PubMed  Google Scholar 

  76. McGonagle D, Tan AL, Madden J et al (2008) Successful treatment of resistant scleroderma-associated interstitial lung disease with rituximab. Rheumatology (Oxford) 47:552–553. https://doi.org/10.1093/rheumatology/kem357

    Article  CAS  Google Scholar 

  77. Daoussis D, Liossis SNC, Tsamandas AC et al (2010) Is there a role for B-cell depletion as therapy for scleroderma? a case report and review of the literature. Semin Arthritis Rheum 40:127–136. https://doi.org/10.1016/j.semarthrit.2009.09.003

    Article  PubMed  Google Scholar 

  78. Haroon M, McLaughlin P, Henry M, Harney S (2011) Cyclophosphamide-refractory scleroderma-associated interstitial lung disease: remarkable clinical and radiological response to a single course of rituximab combined with high-dose corticosteroids. Ther Adv Respir Dis 5:299–304. https://doi.org/10.1177/1753465811407786

    Article  CAS  PubMed  Google Scholar 

  79. Alexeeva EI, Valieva SI, Bzarova TM et al (2012) Experience of rituximab treatment in a patient with juvenile scleroderma. Nauchno-Prakticheskaya Revmatologiya 11:131–137

    Google Scholar 

  80. Daoussis D, Antonopoulos I, Liossis SNC, Yiannopoulos G, Andonopoulos AP (2012) Treatment of systemic sclerosis-associated calcinosis: a case report of rituximab-induced regression of CREST-related calcinosis and review of the literature. Semin Arthritis Rheum 41:822–829. https://doi.org/10.1016/j.semarthrit.2011.11.007

    Article  PubMed  Google Scholar 

  81. De Paula DR, Klem FB, Lorencetti PG, Muller C, Azevedo VF (2013) Rituximab-induced regression of CREST-related calcinosis. Clin Rheumatol 32:281–283. https://doi.org/10.1007/s10067-012-2124-z

    Article  PubMed  Google Scholar 

  82. Sumida H, Asano Y, Tamaki Z et al (2014) Successful experience of rituximab therapy for systemic sclerosis-associated interstitial lung disease with concomitant systemic lupus erythematosus. J Dermatol 41:418–420. https://doi.org/10.1111/1346-8138.12461

    Article  CAS  PubMed  Google Scholar 

  83. Akram Q, Roberts M, Oddis C, Herrick A, Chinoy H (2016) Rituximab-induced neutropenia in a patient with inflammatory myopathy and systemic sclerosis overlap disease. Reumatologia 54:35–37. https://doi.org/10.5114/reum.2016.58760

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ebata S, Yoshizaki A, Fukasawa T et al (2017) Unprecedented success of rituximab therapy for prednisolone- and immunosuppressant-resistant systemic sclerosis-associated interstitial lung disease. Scand J Rheumatol 46:247–252. https://doi.org/10.1080/03009742.2016.1231341

    Article  CAS  PubMed  Google Scholar 

  85. Dall’Ara F, Lazzaroni MG, Antonioli CM, Airò P (2017) Systemic sclerosis with anti-RNA polymerase III positivity following silicone breast implant rupture: possible role of B-cell depletion and implant removal in the treatment. Rheumatol Int 37:847–851. https://doi.org/10.1007/s00296-017-3654-0

    Article  CAS  PubMed  Google Scholar 

  86. Numajiri H, Yoshizaki A, Ebata S et al (2018) Successful treatment with rituximab in a Japanese patient with systemic sclerosis-associated interstitial lung disease resistant to oral steroid and cyclophosphamide. J Dermatol 45:e140–e141. https://doi.org/10.1111/1346-8138.14189

    Article  PubMed  Google Scholar 

  87. Melissaropoulos K, Kraniotis P, Bogdanos D, Dimitroulas T, Sakkas L, Daoussis D (2019) Targeting very early systemic sclerosis: a case-based review. Rheumatol Int 39:1961–1970. https://doi.org/10.1007/s00296-019-04357-x

    Article  PubMed  Google Scholar 

  88. Jordan S, Distler JHW, Maurer B et al (2015) Effects and safety of rituximab in systemic sclerosis: An analysis from the European Scleroderma Trial and Research (EUSTAR) group. Ann Rheum Dis 74:1188–1194. https://doi.org/10.1136/annrheumdis-2013-204522

    Article  CAS  PubMed  Google Scholar 

  89. Daoussis D, Melissaropoulos K, Sakellaropoulos G et al (2017) A multicenter, open-label, comparative study of B-cell depletion therapy with Rituximab for systemic sclerosis-associated interstitial lung disease. Semin Arthritis Rheum 46:625–631. https://doi.org/10.1016/j.semarthrit.2016.10.003

    Article  CAS  PubMed  Google Scholar 

  90. Thiebaut M, Launay D, Rivière S et al (2018) Efficacy and safety of rituximab in systemic sclerosis: French retrospective study and literature review. Autoimmun Rev 17:582–587. https://doi.org/10.1016/j.autrev.2017.12.010

    Article  CAS  PubMed  Google Scholar 

  91. Elhai M, Boubaya M, Distler O et al (2019) Outcomes of patients with systemic sclerosis treated with rituximab in contemporary practice: a prospective cohort study. Ann Rheum Dis 78:979–987. https://doi.org/10.1136/annrheumdis-2018-214816

    Article  CAS  PubMed  Google Scholar 

  92. Narváez J, Pirola JP, Lluch J, Juarez P, Nolla JM, Valenzuela A (2019) Effectiveness and safety of rituximab for the treatment of refractory systemic sclerosis associated calcinosis: a case series and systematic review of the literature. Autoimmun Rev 18:262–269. https://doi.org/10.1016/j.autrev.2018.10.006

    Article  CAS  PubMed  Google Scholar 

  93. Daoussis D, Liossis SNC, Tsamandas AC et al (2010) Experience with rituximab in scleroderma: results from a 1-year, proof-of-principle study. Rheumatology (Oxford) 49:271–280. https://doi.org/10.1093/rheumatology/kep093

    Article  CAS  Google Scholar 

  94. Sircar G, Goswami RP, Sircar D, Ghosh A, Ghosh P (2018) Intravenous cyclophosphamide vs rituximab for the treatment of early diffuse scleroderma lung disease: open label, randomized, controlled trial. Rheumatology (Oxford) 57:2106–2113. https://doi.org/10.1093/rheumatology/key213

    Article  CAS  Google Scholar 

  95. Vilela VS, Da Silva BRA, Da Costa CH, Lopes AJ, Levy RA, Rufino R (2018) Effects of treatment with rituximab on microcirculation in patients with long-term systemic sclerosis. BMC Res Notes 11:874. https://doi.org/10.1186/s13104-018-3994-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Daoussis D, Tsamandas AC, Liossis SNC et al (2012) B-cell depletion therapy in patients with diffuse systemic sclerosis associates with a significant decrease in PDGFR expression and activation in spindle-like cells in the skin. Arthritis Res Ther 14:R145. https://doi.org/10.1186/ar3879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Daoussis D, Tsamandas A, Antonopoulos I et al (2016) B cell depletion therapy upregulates Dkk-1 skin expression in patients with systemic sclerosis: association with enhanced resolution of skin fibrosis. Arthritis Res Ther 18:118 https://doi.org/10.1186/s13075-016-1017-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Antonopoulos I, Daoussis D, Lalioti ME et al (2019) B cell depletion treatment decreases CD4+IL4+ and CD4+CD40L+ T cells in patients with systemic sclerosis. Rheumatol Int 39:1889–1898. https://doi.org/10.1007/s00296-019-04350-4

    Article  CAS  PubMed  Google Scholar 

  99. Schiopu E, Chatterjee S, Hsu V et al (2016) Safety and tolerability of an anti-CD19 monoclonal antibody, MEDI-551, in subjects with systemic sclerosis: a phase I, randomized, placebo-controlled, escalating single-dose study. Arthritis Res Ther 18:131. https://doi.org/10.1186/s13075-016-1021-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Streicher K, Sridhar S, Kuziora M et al (2018) Baseline plasma cell gene signature predicts improvement in systemic sclerosis skin scores following treatment with inebilizumab (MEDI-551) and correlates with disease activity in systemic lupus erythematosus and chronic obstructive pulmonary disease. Arthritis Rheumatol 70:2087–2095. https://doi.org/10.1002/art.40656

    Article  CAS  PubMed  Google Scholar 

  101. Fineschi S, Bongiovanni M, Donati Y et al (2008) In vivo investigations on anti-fibrotic potential of proteasome inhibition in lung and skin fibrosis. Am J Respir Cell Mol Biol 39:458–465. https://doi.org/10.1165/rcmb.2007-0320OC

    Article  CAS  PubMed  Google Scholar 

  102. Goffin L, Seguin-Estevez Q, Alvarez M, Reith W, Chizzolini C (2010) Transcriptional regulation of matrix metalloproteinase-1 and collagen 1A2 explains the anti-fibrotic effect exerted by proteasome inhibition in human dermal fibroblasts. Arthritis Res Ther 12:R73. https://doi.org/10.1186/ar2991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gordon JK, Martyanov V, Franks JM et al (2018) Belimumab for the treatment of early diffuse systemic sclerosis: results of a randomized, double-blind, placebo-controlled, pilot trial. Arthritis Rheumatol 70:308–316. https://doi.org/10.1002/art.40358

    Article  CAS  PubMed  Google Scholar 

  104. Lavie F, Miceli-Richard C, Ittah M, Sellam J, Gottenberg J-E, Mariette X (2007) Increase of B cell-activating factor of the TNF family (BAFF) after rituximab treatment: insights into a new regulating system of BAFF production. Ann Rheum Dis 66:700–703. https://doi.org/10.1136/ard.2006.060772

    Article  CAS  PubMed  Google Scholar 

  105. Denton CP, Merkel PA, Furst DE et al (2007) Recombinant human anti-transforming growth factor beta1 antibody therapy in systemic sclerosis: a multicenter, randomized, placebo-controlled phase I/II trial of CAT-192. Arthritis Rheum 56:323–333. https://doi.org/10.1002/art.22289

    Article  CAS  PubMed  Google Scholar 

  106. Rice LM, Padilla CM, McLaughlin SR et al (2015) Fresolimumab treatment decreases biomarkers and improves clinical symptoms in systemic sclerosis patients. J Clin Invest 125:2795–2807. https://doi.org/10.1172/JCI77958

    Article  PubMed  PubMed Central  Google Scholar 

  107. Isaacs JD, Hazleman BL, Chakravarty K, Grant JW, Hale G, Waldmann H (1996) Monoclonal antibody therapy of diffuse cutaneous scleroderma with CAMPATH-1H. J Rheumatol 23:1103–1106

    CAS  PubMed  Google Scholar 

  108. Styczynski J, Tallamy B, Waxman I et al (2011) A pilot study of reduced toxicity conditioning with BU, fludarabine and alemtuzumab before the allogeneic hematopoietic SCT in children and adolescents. Bone Marrow Transplant 46:790–799. https://doi.org/10.1038/bmt.2010.209

    Article  CAS  PubMed  Google Scholar 

  109. Spierings J, van Laar JM (2019) Is there a place for hematopoietic stem cell transplantation in rheumatology? Rheum Dis Clin North Am 45:399–416. https://doi.org/10.1016/j.rdc.2019.04.003

    Article  PubMed  Google Scholar 

  110. Mantero JC, Kishore N, Ziemek J, et al. (2018) Randomised, double-blind, placebo-controlled trial of IL1-trap, rilonacept, in systemic sclerosis. A phase I/II biomarker trial. Clin Exp Rheumatol 36 Suppl 113:146–149.

  111. Beyer C, Schett G, Distler O, Distler JHW (2010) Animal models of systemic sclerosis: prospects and limitations. Arthritis Rheum 62:2831–2844. https://doi.org/10.1002/art.27647

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Contributions

The conception and design of the study—DPM, VA; acquisition of data, analysis and interpretation of data—DPM, SA, VA. Drafting the article—DPM, SA; Revising it critically for important intellectual content—VA. Final approval of the version to be submitted—DPM, SA, VA. Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved—DPM, SA, VA.

Corresponding author

Correspondence to Durga Prasanna Misra.

Ethics declarations

Conflict of interest

Durga Prasanna Misra declares that he has no conflict of interest, including no relationship with pharmaceutical companies. Sakir Ahmed declares that he has no conflict of interest, including no relationship with pharmaceutical companies. Vikas Agarwal declares that he has no conflict of interest, including no relationship with pharmaceutical companies.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misra, D.P., Ahmed, S. & Agarwal, V. Is biological therapy in systemic sclerosis the answer?. Rheumatol Int 40, 679–694 (2020). https://doi.org/10.1007/s00296-020-04515-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-020-04515-6

Keywords

Navigation