Skip to main content

Advertisement

Log in

Sarcopenia in systemic sclerosis: the impact of nutritional, clinical, and laboratory features

  • Observational Research
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

We evaluated the presence of sarcopenia in a population of systemic sclerosis (SSc) patients, with respect to nutritional, clinical, and laboratory features. A total of 62 patients who met the ACR/EULAR 2013 classification criteria were enrolled. Sarcopenia was defined according to the Relative Skeletal Mass Index (RSMI) and hand grip strength (HGS). Body composition was assessed with the calculation of the Body Mass Index (BMI), lean body mass (LBM) and fat mass (FM). Malnutrition was evaluated according to the ESPEN criteria. Clinical evaluation included nailfold capillaroscopy and skin evaluation by modified Rodnan Skin Score (mRSS), pulmonary function tests (PFT) with diffusing capacity for carbon monoxide adjusted for hemoglobin (DLCO), high-resolution computed tomography (HR-CT) of the lungs, echocardiography and high-resolution manometry (HRM) for esophageal involvement. Laboratory evaluation included erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), hemoglobin, creatinine, creatine kinase (CK), transaminases, lipid profile, glycemia, albumin, and vitamin-D. Antinuclear antibodies (ANA) and extractable nuclear antigens (ENA) were also assessed. Considering RSMI, the prevalence of sarcopenia is 42%. In this case, age, malnutrition, disease duration, mRSS, capillaroscopy score, esophageal involvement, ESR, and ANA titer are higher in the sarcopenic group, while DLCO and LBM are lower. Considering HGS, the prevalence of sarcopenia is 55%. Age, disease duration, malnutrition, FM, mRSS, capillaroscopy score, esophageal involvement, ESR, and ENA positivity are higher in the sarcopenic group, while DLCO is lower. By using both RSMI and HGS to assess sarcopenia in SSc, the results of this study demonstrated that this condition correlates with different nutritional, clinical, and biochemical parameters associated with the worsening of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahat G, Tufan A, Tufan F et al (2016) Cut-off points to identify sarcopenia according to European Working Group on Sarcopenia in Older People (EWGSOP) definition. Clin Nutr 35:1557–1563

    Article  PubMed  Google Scholar 

  2. Matsunaga T, Miyata H, Sugimura K et al (2019) Prognostic significance of sarcopenia and systemic inflammatory response in patients with esophageal cancer. Anticancer Res 39:449–458

    Article  PubMed  Google Scholar 

  3. Kawakubo N, Kinoshita Y, Souzaki R et al (2019) The influence of sarcopenia on high-risk neuroblastoma. J Surg Res 236:101–105

    Article  PubMed  Google Scholar 

  4. Laurent MR, Dedeyne L, Dupont J et al (2019) Age-related bone loss and sarcopenia in men. Maturitas 122:51–56

    Article  PubMed  Google Scholar 

  5. Barone M, Viggiani MT, Anelli MG et al (2018) Sarcopenia in patients with rheumatic diseases: prevalence and associated risk factors. J Clin Med. https://doi.org/10.3390/jcm7120504

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ngeuleu A, Allali F, Medrare L et al (2017) Sarcopenia in rheumatoid arthritis: prevalence, influence of disease activity and associated factors. Rheumatol Int 37:1015–1020

    Article  CAS  PubMed  Google Scholar 

  7. Denton CP (2016) Advances in pathogenesis and treatment of systemic sclerosis. Clin Med Lond 16:55–60

    Article  PubMed  PubMed Central  Google Scholar 

  8. Leroy EC, Black C, Fleischmajer R et al (1988) Scleroderma (systemic sclerosis): classification, subsets and pathogenesis. J Rheumatol 15:202–205

    CAS  PubMed  Google Scholar 

  9. Pearson DR, Werth VP, Pappas-Taffer L (2018) Systemic sclerosis: current concepts of skin and systemic manifestations. Clin Dermatol 36:459–474

    Article  PubMed  Google Scholar 

  10. Orlandi M, Barsotti S, Lepri G et al (2018) One year in review 2018: systemic sclerosis. Clin Exp Rheumatol 113:3–23

    Google Scholar 

  11. Caimmi C, Caramaschi P, Venturini A et al (2018) Malnutrition and sarcopenia in a large cohort of patients with systemic sclerosis. Clin Rheumatol 37:987–997

    Article  CAS  PubMed  Google Scholar 

  12. Siegert E, March C, Otten L et al (2018) Prevalence of sarcopenia in systemic sclerosis: assessing body composition and functional disability in patients with systemic sclerosis. Nutrition 55–56:51–55

    Article  PubMed  Google Scholar 

  13. Sallam H, Mcnearney TA, Chen JD (2006) Systematic review: pathophysiology and management of gastrointestinal dysmotility in systemic sclerosis (scleroderma). Aliment Pharmacol Ther 23:691–712

    Article  CAS  PubMed  Google Scholar 

  14. Harrison E, Herrick AL, Mclaughlin JT et al (2012) Malnutrition in systemic sclerosis. Rheumatology (Oxford) 51:1747–1756

    Article  Google Scholar 

  15. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, European Working Group on Sarcopenia in Older People et al (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing 39:412–423

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cruz-Jentoft AJ, Bahat G, Bauer J et al (2019) Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48:16–31

    Article  PubMed  Google Scholar 

  17. Van den Hoogen F, Khanna D, Fransen J et al (2013) 2013 classification criteria for systemic sclerosis: an American College of Rheumatology/European League against Rheumatism collaborative initiative. Ann Rheum Dis 72:1747–1755

    Article  PubMed  Google Scholar 

  18. Van den Hoogen F, Khanna D, Fransen J et al (2013) 2013 classification criteria for systemic sclerosis: an American College of Rheumatology/European League against Rheumatism collaborative initiative. Arthritis Rheum 65:2737–2747

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kumánovics G, Péntek M, Bae S et al (2017) Assessment of skin involvement in systemic sclerosis. Rheumatology (Oxford) 56:53–66

    Article  Google Scholar 

  20. Galiè N, Hoeper MM, Humbert M, ESC Committee for Practice Guidelines (CPG) et al (2009) Guidelines for the diagnosis and treatment of pulmonary hypertension: the task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J 30:2493–2537

    Article  PubMed  Google Scholar 

  21. Denaxas K, Ladas SD, Karamanolis GP (2018) Evaluation and management of esophageal manifestations in systemic sclerosis. Ann Gastroenterol 31:165–170

    PubMed  PubMed Central  Google Scholar 

  22. Ruaro B, Pizzorni C, Paolino S et al (2019) Correlations between nailfold microvascular damage and skin involvement in systemic sclerosis patients. Microvasc Res. https://doi.org/10.1016/j.mvr.2019.04.004

    Article  PubMed  Google Scholar 

  23. Peterson CM, Thomas DM, Blackburn GL et al (2016) Universal equation for estimating ideal body weight and body weight at any BMI. Am J Clin Nutr 103:1197–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cederholm T, Bosaeus I, Barazzoni R et al (2015) Diagnostic criteria for malnutrition—an ESPEN consensus statement. Clin Nutr 34:335–340

    Article  CAS  PubMed  Google Scholar 

  25. Roberts HC, Denison HJ, Martin HJ et al (2011) A review of the measurement of grip strength in clinical and epidemiological studies: towards a standardised approach. Age Ageing 40:423–429

    Article  PubMed  Google Scholar 

  26. Ware JE Jr, Sherbourne CD (1992) The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care 30:473–483

    Article  PubMed  Google Scholar 

  27. Morley JE, Baumgartner RN, Roubenoff R et al (2001) Sarcopenia. J Lab Clin Med 137:231–243

    Article  CAS  PubMed  Google Scholar 

  28. Melton LJ 3rd, Khosla S, Crowson CS et al (2000) Epidemiology of sarcopenia. J Am Geriatr Soc 48:625–630

    Article  PubMed  Google Scholar 

  29. Melton LJ, Khosla S, Riggs BL (2000) Epidemiology of sarcopenia. Mayo Clin Proc 75 Suppl:S10–S12 (discussion S12-3)

    Article  PubMed  Google Scholar 

  30. Yazar T, Olgun Yazar H (2019) Prevalance of sarcopenia according to decade. Clin Nutr ESPEN 29:137–141

    Article  PubMed  Google Scholar 

  31. Lima RM, De Oliveira RJ, Raposo R (2019) Stages of sarcopenia, bone mineral density, and the prevalence of osteoporosis in older women. Arch Osteoporos 14:38

    Article  PubMed  Google Scholar 

  32. Doerfler B, Allen TS, Southwood C et al (2017) Medical nutrition therapy for patients with advanced systemic sclerosis (MNT PASS): a pilot intervention study. J Parenter Enteral Nutr 41:678–684

    Article  Google Scholar 

  33. Marighela TF, Genaro PDES, Pinheiro MM et al (2013) Risk factors for body composition abnormalities in systemic sclerosis. Clin Rheumatol 32:1037–1044

    Article  PubMed  Google Scholar 

  34. Neves T, Fett CA, Ferriolli E et al (2018) Correlation between muscle mass, nutritional status and physical performance of elderly people. Osteoporos Sarcopenia 4:145–149

    Article  PubMed  PubMed Central  Google Scholar 

  35. Merlini L, Vagheggini A, Cocchi D (2014) Sarcopenia and sarcopenic obesity in patients with muscular dystrophy. Front Aging Neurosci 6:274

    Article  PubMed  PubMed Central  Google Scholar 

  36. Choi KM (2016) Sarcopenia and sarcopenic obesity. Korean J Intern Med 31:1054–1060

    Article  PubMed  PubMed Central  Google Scholar 

  37. Manoy P, Anomasiri W, Yuktanandana P et al (2017) Elevated serum leptin levels are associated with low vitamin D, sarcopenic obesity, poor muscle strength, and physical performance in knee osteoarthritis. Biomarkers 22:723–730

    Article  CAS  PubMed  Google Scholar 

  38. Kemmler W, Teschler M, Goisser S et al (2015) Prevalence of sarcopenia in Germany and the corresponding effect of osteoarthritis in females 70 years and older living in the community: results of the FORMoSA study. Clin Interv Aging 10:1565–1573

    Article  PubMed  PubMed Central  Google Scholar 

  39. Torii M, Hashimoto M, Hanai A et al (2018) Prevalence and factors associated with sarcopenia in patients with rheumatoid arthritis. Mod Rheumatol 11:1–7

    Google Scholar 

  40. Tada M, Yamada Y, Mandai K et al (2018) Matrix metalloprotease 3 is associated with sarcopenia in rheumatoid arthritis—results from the CHIKARA study. Int J Rheum Dis 21:1962–1969

    Article  CAS  PubMed  Google Scholar 

  41. Koca I, Savas E, Ozturk ZA et al (2016) The evaluation in terms of sarcopenia of patients with fibromyalgia syndrome. Wien Klin Wochenschr 128:816–821

    Article  PubMed  Google Scholar 

  42. Santos MJ, Vinagre F, Canas Da Silva J et al (2011) Body composition phenotypes in systemic lupus erythematosus and rheumatoid arthritis: a comparative study of Caucasian female patients. Clin Exp Rheumatol 29:470–476

    CAS  PubMed  Google Scholar 

  43. El Maghraoui A, Ebo’o FB, Sadni S et al (2016) Is there a relation between pre-sarcopenia, sarcopenia, cachexia and osteoporosis in patients with ankylosing spondylitis? BMC Musculoskelet Disord 17:268

    Article  PubMed  PubMed Central  Google Scholar 

  44. Matsuda KM, Yoshizaki A, Kuzumi A et al (2019) Skin thickness score as a surrogate marker of organ involvements in systemic sclerosis: a retrospective observational study. Arthritis Res Ther 21:129

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mclean RR, Kiel DP (2015) Developing consensus criteria for sarcopenia: an update. J Bone Miner Res 30:588–592

    Article  PubMed  Google Scholar 

  46. Frisoli A Jr, Martin FG, Carvalho ACC et al (2018) Sex effects on the association between sarcopenia EWGSOP and osteoporosis in outpatient older adults: data from the SARCOS study. Arch Endocrinol Metab 62:615–622

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Corallo.

Ethics declarations

Conflict of interest

None declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The manuscript is original and no part of the manuscript has been copied or published elsewhere.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corallo, C., Fioravanti, A., Tenti, S. et al. Sarcopenia in systemic sclerosis: the impact of nutritional, clinical, and laboratory features. Rheumatol Int 39, 1767–1775 (2019). https://doi.org/10.1007/s00296-019-04401-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-019-04401-w

Keywords

Navigation