Skip to main content

Advertisement

Log in

Evidence for genetic overlap between adult onset Still’s disease and hereditary periodic fever syndromes

  • Genes and Disease
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Objective

Adult onset Still’s disease (AOSD) is a severe, autoimmune disease that can be challenging to treat with conventional therapeutics and biologicals in a considerable number of cases. Therefore, there is a high need to understand its pathogenesis better. As major clinical symptoms overlap between AOSD and hereditary periodic fever syndromes (HPFS), we analysed four known HPFS genes in AOSD.

Methods

We performed Sanger sequencing and quantitative analysis of all coding regions of MEFV, TNFRSF1A, MVK and NLRP3 in 40 AOSD patients. All rare coding variants (n = 6) were evaluated for several aspects to classify them as benign to pathogenic variants. Statistical analysis was performed to analyse whether variants classified as (likely) pathogenic were associated with AOSD.

Results

We identified three rare variants in MEFV, one previously not described. Association to the three likely pathogenic MEFV variants was significant (p c = 2.34E− 03), and two of the three carriers had a severe course of disease. We observed strong evidence for significant association to mutations in TNFRSF1A (p c = 2.40E− 04), as 5% of patients (2/40) carried a (likely) pathogenic variant in this gene. Both of them received a biological for treatment.

Conclusion

Our results indicate TNFRSF1A as a relevant gene in AOSD, especially in patients with a more challenging course of disease, while causal variants remain to be identified in the majority of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ACMG:

American College of Medical Genetics

ANA:

Antinuclear antibodies

AOSD:

Adult onset Still’s disease

BDGP:

Berkeley Drosophila genome project

CAPS:

Cryopyrin-associated periodic syndromes

CINCA:

Chronic infantile neurological, cutaneous, articular syndrome

DMARD:

Disease-modifying anti-rheumatic drugs

EVS:

Exome variant server

ExAC:

Exome aggregation consortium

FMF:

Familial Mediterranean fever

GERP++:

Genomic evolutionary rate profiling

GPT:

Glutamate-pyruvate-transaminase

HPFS:

Hereditary periodic fever syndromes

HSF:

Human splicing finder

IL:

Interleukin

LRT:

Likelihood ratio test

MAF:

Minor allele frequency

MEFV :

Familial Mediterranean Fever gene

MKD:

Mevalonate kinase deficiency

MLPA:

Multiplex ligation-dependent probe amplification

MVK :

Mevalonate kinase gene

MWS:

Muckle–Wells syndrome

NFE:

Non-Finnish Europeans

NLRP3 :

NLR Family Pyrin Domain Containing 3

RT-PCR:

Reverse transcriptase polymerase chain reaction

SIFT:

Scale-invariant feature transform

TNF:

Tumour necrosis factor

TNFRSF1A :

Tumour necrosis factor receptor superfamily member 1A

TRAPS:

Tumour necrosis factor receptor-associated periodic syndrome

VUS:

Variant of uncertain significance

γ-GT:

γ-Glutamyltransferase

References

  1. Bywaters EG (1971) Still’s disease in the adult. Ann Rheum Dis 30(2):121–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stabile A, Avallone L, Compagnone A et al (2006) Focus on juvenile idiopathic arthritis according to the 2001 Edmonton revised classification from the International League of Associations for Rheumatology: an Italian experience. Eur Rev Med Pharmacol Sci 10(5):229–234

    CAS  PubMed  Google Scholar 

  3. Yamaguchi M, Ohta A, Tsunematsu T et al (1992) Preliminary criteria for classification of adult Still’s disease. J Rheumatol 19(3):424–430

    CAS  PubMed  Google Scholar 

  4. van de Putte LB, Wouters JM (1991) Adult-onset Still’s disease. Bailliere’s Clin Rheumatol 5(2):263–275

    Article  Google Scholar 

  5. Efthimiou P, Georgy S (2006) Pathogenesis and management of adult-onset Still’s disease. Semin Arthritis Rheum 36(3):144–152

    Article  CAS  PubMed  Google Scholar 

  6. de Boysson H, Fevrier J, Nicolle A et al (2013) Tocilizumab in the treatment of the adult-onset Still’s disease: current clinical evidence. Clinical Rheumatol 32(1):141–147

    Article  Google Scholar 

  7. Ortiz-Sanjuan F, Blanco R, Calvo-Rio V et al (2014) Efficacy of tocilizumab in conventional treatment-refractory adult-onset Still’s disease: multicenter retrospective open-label study of thirty-four patients. Arthritis Rheumatol 66(6):1659–1665

    Article  CAS  PubMed  Google Scholar 

  8. Yao Q, Furst DE (2008) Autoinflammatory diseases: an update of clinical and genetic aspects. Rheumatology 47(7):946–51

    Article  CAS  PubMed  Google Scholar 

  9. Kawaguchi Y, Terajima H, Harigai M et al (2001) Interleukin-18 as a novel diagnostic marker and indicator of disease severity in adult-onset Still’s disease. Arthritis Rheum 44(7):1716–1717

    Article  CAS  PubMed  Google Scholar 

  10. Mehta B, Efthimiou P (2012) Ferritin in adult-onset Still’s disease: just a useful innocent bystander? Int J Inflam 2012:298405

    PubMed  PubMed Central  Google Scholar 

  11. Mitrovic S, Fautrel B (2017) New Markers for Adult-Onset Still’s Disease. Joint Bone Spine

  12. Bohm B, Burkhardt H, Uebe S et al (2012) Identification of low-frequency TRAF3IP2 coding variants in psoriatic arthritis patients and functional characterization. Arthritis Res Ther 14(2):R84

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sherry ST, Ward MH, Kholodov M et al (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29(1):308–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lek M, Karczewski KJ, Minikel EV et al (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536(7616):285–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang H, Wang K (2015) Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR. Nat Protoc 10(10):1556–1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vajjhala PR, Kaiser S, Smith SJ et al (2014) Identification of multifaceted binding modes for pyrin and ASC pyrin domains gives insights into pyrin inflammasome assembly. J Biol Chem 289(34):23504–23519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Weinert C, Morger D, Djekic A et al (2015) Crystal structure of TRIM20 C-terminal coiled-coil/B30.2 fragment: implications for the recognition of higher order oligomers. Sci Rep 5:10819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Naismith JH, Devine TQ, Kohno T et al (1996) Structures of the extracellular domain of the type I tumour necrosis factor receptor. Structure 4(11):1251–1262

    Article  CAS  PubMed  Google Scholar 

  19. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18(15):2714–2723

    Article  CAS  PubMed  Google Scholar 

  20. Sayle RA, Milner-White EJ (1995) RASMOL: biomolecular graphics for all. Trends Biochem Sci 20(9):374

    Article  CAS  PubMed  Google Scholar 

  21. Richards S, Aziz N, Bale S et al. (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–424

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kleinberger J, Maloney KA, Pollin TI et al (2016) An openly available online tool for implementing the ACMG/AMP standards and guidelines for the interpretation of sequence variants. Genet Med 18(11):1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schouten JP, McElgunn CJ, Waaijer R et al (2002) Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res 30(12):e57

    Article  PubMed  PubMed Central  Google Scholar 

  24. Korber A, Mossner R, Renner R et al (2013) Mutations in IL36RN in patients with generalized pustular psoriasis. J Invest Dermatol 133(11):2634–2637

    Article  PubMed  Google Scholar 

  25. Reese MG, Eeckman FH, Kulp D et al (1997) Improved splice site detection in Genie. J Comput Biol 4(3):311–323

    Article  CAS  PubMed  Google Scholar 

  26. Desmet FO, Hamroun D, Lalande M et al (2009) Human splicing finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res 37(9):e67

    Article  PubMed  PubMed Central  Google Scholar 

  27. R CT (2012) R: a language and environment for statistical computing. http://wwwR-projectorg/. ISBN 3–900051-07-0

  28. Mossner R, Frambach Y, Wilsmann-Theis D et al (2015) Palmoplantar pustular psoriasis is associated with missense variants in CARD14, but not with loss-of-function mutations in IL36RN in European patients. J Invest Dermatol 135(10):2538–2541

    Article  PubMed  Google Scholar 

  29. Papin S, Cuenin S, Agostini L et al (2007) The SPRY domain of Pyrin, mutated in familial Mediterranean fever patients, interacts with inflammasome components and inhibits proIL-1beta processing. Cell Death Differ 14(8):1457–1466

    Article  CAS  PubMed  Google Scholar 

  30. Dode C, Pecheux C, Cazeneuve C et al (2000) Mutations in the MEFV gene in a large series of patients with a clinical diagnosis of familial Mediterranean fever. Am J Med Genet 92(4):241–246

    Article  CAS  PubMed  Google Scholar 

  31. Coker I, Colak A, Yolcu I et al (2011) MEFV gene mutation spectrum in familial Mediterranean fever (FMF): a single center study in the Aegean region of Turkey. Z Rheumatol 70(6):511–516

    Article  CAS  PubMed  Google Scholar 

  32. (1997) Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever. Int FMF Consort Cell 90(4):797–807

  33. Rieber N, Gavrilov A, Hofer L et al (2015) A functional inflammasome activation assay differentiates patients with pathogenic NLRP3 mutations and symptomatic patients with low penetrance variants. Clin Immunol 157(1):56–64

    Article  CAS  PubMed  Google Scholar 

  34. Yuksel S, Eren E, Hatemi G et al (2014) Novel NLRP3/cryopyrin mutations and pro-inflammatory cytokine profiles in Behcet’s syndrome patients. Int Immunol 26(2):71–81

    Article  PubMed  Google Scholar 

  35. Aksentijevich I, Galon J, Soares M et al. (2001) The tumour-necrosis-factor receptor-associated periodic syndrome: new mutations in TNFRSF1A, ancestral origins, genotype-phenotype studies, and evidence for further genetic heterogeneity of periodic fevers. Am J Hum Genet. 69(2):301–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McDermott MF, Aksentijevich I, Galon J et al. (1999) Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell. 97(1):133–144

    Article  CAS  PubMed  Google Scholar 

  37. Landrum MJ, Lee JM, Benson M et al (2016) ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res 44(D1):D862–D868

    Article  CAS  PubMed  Google Scholar 

  38. Kriegel MA, Huffmeier U, Scherb E et al (2003) Tumour necrosis factor receptor-associated periodic syndrome characterized by a mutation affecting the cleavage site of the receptor: implications for pathogenesis. Arthritis Rheum 48(8):2386–2388

    Article  CAS  PubMed  Google Scholar 

  39. Cosan F, Emrence Z, Erbag G et al (2013) The association of TNFRSF1A gene and MEFV gene mutations with adult onset Still’s disease. Rheumatol Int 33(7):1675–1680

    Article  CAS  PubMed  Google Scholar 

  40. Kim JJ, Kim JK, Shim SC et al (2013) MEFV gene mutations and their clinical significance in Korean patients with adult-onset Still’s disease. Clin Exp Rheumatol 31(3 Suppl 77):60–63

    PubMed  Google Scholar 

  41. Nonaka F, Migita K, Jiuchi Y et al (2015) Increased prevalence of MEFV exon 10 variants in Japanese patients with adult-onset Still’s disease. Clin Exp Immunol 179(3):392–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tanaka N, Izawa K, Saito MK et al (2011) High incidence of NLRP3 somatic mosaicism in patients with chronic infantile neurologic, cutaneous, articular syndrome: results of an International Multicenter Collaborative Study. Arthritis Rheum 63(11):3625–3632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Betancur JF, Navarro EP, Echeverry A et al (2015) Hyperferritinemic syndrome: still’s disease and catastrophic antiphospholipid syndrome triggered by fulminant Chikungunya infection: a case report of two patients. Clinical Rheumatol 34(11):1989–1992

    Article  Google Scholar 

  44. Schifter T, Lewinski UH (1998) Adult onset Still’s disease associated with Epstein-Barr virus infection in a 66-year-old woman. Scand J Rheumatol 27(6):458–460

    Article  CAS  PubMed  Google Scholar 

  45. Chen DY, Chen YM, Lan JL et al (2012) Significant association of past parvovirus B19 infection with cytopenia in both adult-onset Still’s disease and systemic lupus erythematosus patients. Clin Chim Acta 413(9–10):855–860

    Article  CAS  PubMed  Google Scholar 

  46. Brandwein SR, Salusinsky-Sternbach M (1989) Adult Still’s disease in only one of identical twins. J Rheumatol 16(12):1599–1601

    CAS  PubMed  Google Scholar 

  47. Ansell BM, Bywaters EG, Lawrence JS (1969) Familial aggregation and twin studies in Still’s disease. Juv Chronic Polyarthritis Rheumatol 2:37–61

    CAS  Google Scholar 

  48. Fautrel B (2008) Adult-onset Still’ disease. Best Pract Res Clin Rheumatol 22(5):773–792

    Article  PubMed  Google Scholar 

  49. Lehmann P, Salzberger B, Haerle P et al (2010) Variable intrafamilial expressivity of the rare tumour necrosis factor-receptor associated periodic syndrome-associated mutation I170N that affects the TNFR1A cleavage site. Modern Rheumatol 20(3):311–315

    Article  Google Scholar 

  50. Rowczenio DM, Trojer H, Russell T et al (2013) Clinical characteristics in subjects with NLRP3 V198M diagnosed at a single UK center and a review of the literature. Arthritis Res Ther 15(1):R30

    Article  PubMed  PubMed Central  Google Scholar 

  51. Neven B, Callebaut I, Prieur AM et al (2004) Molecular basis of the spectral expression of CIAS1 mutations associated with phagocytic cell-mediated autoinflammatory disorders CINCA/NOMID, MWS, and FCU. Blood 103(7):2809–2815

    Article  CAS  PubMed  Google Scholar 

  52. Hoffman HM, Mueller JL, Broide DH et al (2001) Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle–Wells syndrome. Nat Genet 29(3):301–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schaner P, Richards N, Wadhwa A et al (2001) Episodic evolution of pyrin in primates: human mutations recapitulate ancestral amino acid states. Nat Genet 27(3):318–321

    Article  CAS  PubMed  Google Scholar 

  54. Timmann C, Muntau B, Kuhne K et al (2001) Two novel mutations R653H and E230K in the Mediterranean fever gene associated with disease. Mutat Res 479(1–2):235–239

    Article  CAS  PubMed  Google Scholar 

  55. Agostini L, Martinon F, Burns K et al (2004) NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle–Wells autoinflammatory disorder. Immunity 20(3):319–325

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to all patients and family members for participating in our study. The present work was performed in fulfillment of the requirements for obtaining the degree “Dr. med.” at the Friedrich-Alexander-University Erlangen-Nürnberg (FAU).

Author information

Authors and Affiliations

Authors

Contributions

J.R., A.H. and U.H. designed the study. J.R., A.H. and N.B. recruited patients and collected clinical data. Genetic, statistical and bioinformatics analyses were performed by R.S., S.L. and H.S. All authors were involved in the interpretation of data. R.S. and U.H. wrote the manuscript that was read and approved by all authors.

Corresponding author

Correspondence to U. Hüffmeier.

Ethics declarations

Ethical approval

The study was conducted according to the Helsinki agreement and approved by the research ethics board of the FAU Erlangen Nürnberg under the protocol number 52_14 B in 2014 and changes were approved in 2015.

Funding

This study was partly funded by the Interdisciplinary Centre for Clinical Research (MD-Thesis Scholarship [RS] and laboratory rotation [UH]) of the Clinical Centre Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany.

Conflict of interest

NB received speaking fees (< 5000 €) from SOBI and Novartis. All other authors have declared no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 50 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sighart, R., Rech, J., Hueber, A. et al. Evidence for genetic overlap between adult onset Still’s disease and hereditary periodic fever syndromes. Rheumatol Int 38, 111–120 (2018). https://doi.org/10.1007/s00296-017-3885-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-017-3885-0

Keywords

Navigation