Skip to main content

Advertisement

Log in

Matrix metalloproteinase genes on chromosome 11q22 and risk of carpal tunnel syndrome

  • Original Article - Genes and Disease
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Involvement of tendons and/or connective tissue structures in the aetiology of idiopathic carpal tunnel syndrome (CTS) has been proposed. DNA sequence variants within genes encoding structural components of the collagen fibril, the basic structural unit of connective tissue, have been shown to associate with modulating CTS risk. The matrix metalloproteinases (MMPs) play an important role in connective tissue remodelling. Variants within the MMP10, MMP1, MMP3 and MMP12 gene cluster on chromosome 11q22 have been associated with connective tissue injuries. The aim of this study was to investigate whether variants within these MMP genes are associated with CTS. Ninety-seven, self-reported Coloured participants with a history of CTS release surgery and 131 appropriately matched controls were genotyped for MMP10 rs486055 (C/T), MMP1 rs1799750 (G/GG), MMP3 rs679620 (A/G) or MMP12 rs2276109 (A/G) variants. A Pearson’s Chi-squared test or a Fisher’s exact test was used to determine any significant differences between the genotype distributions or any other categorical data of the groups. An analysis of variance (ANOVA) was used to detect any significant differences between CTS and control groups for continuous data. There were no independent associations between any of the investigated MMP variants and CTS. There were also no significant differences in the relative distributions of the constructed MMP inferred haplotypes between CTS and CON groups. The MMP variants previously associated with other connective tissue injuries were not associated with CTS in this population. These findings do not exclude the possibility that other variants within this locus or other MMP genes are associated with CTS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ettema AM, Amadio PC, Zhao C et al (2004) A histological and immunohistochemical study of the subsynovial connective tissue in idiopathic carpal tunnel syndrome. J Bone Joint Surg 86:1458–1466

    PubMed  Google Scholar 

  2. Zhao C, Ettema AM, Osamura N et al (2007) Gliding characteristics between flexor tendons and surrounding tissues in the carpal tunnel: a biomechanical cadaver study. J Orthop Res 25:185–190. doi:10.1002/jor

    Article  PubMed  Google Scholar 

  3. Burger M, De Wet H, Collins M (2014) The COL5A1 gene is associated with increased risk of carpal tunnel syndrome. Clin Rheumatol 34:767–774. doi:10.1007/s10067-014-2727-7

    Article  PubMed  Google Scholar 

  4. Burger MC, De Wet H, Collins M (2014) The BGN and ACAN genes and carpal tunnel syndrome. Gene 551:160–166. doi:10.1016/j.gene.2014.08.051

    Article  CAS  PubMed  Google Scholar 

  5. Pasternak B, Aspenberg P (2009) Metalloproteinases and their inhibitors-diagnostic and therapeutic opportunities in orthopedics. Acta Orthop 80:693–703. doi:10.3109/17453670903448257

    Article  PubMed Central  PubMed  Google Scholar 

  6. Raleigh SM, Van Der Merwe L, Ribbans WJ et al (2009) Variants within the MMP3 gene are associated with Achilles tendinopathy: possible interaction with the COL5A1 gene. Sport Med 43:514–520. doi:10.1136/bjsm.2008.053892

    CAS  Google Scholar 

  7. Posthumus M, Collins M, van der Merwe L et al (2012) Matrix metalloproteinase genes on chromosome 11q22 and the risk of anterior cruciate ligament (ACL) rupture. Scand J Med Sci Sport 22:523–533

    Article  CAS  Google Scholar 

  8. Malila S, Yuktanandana P, Saowaprut S et al (2011) Association between matrix metalloproteinase-3 polymorphism and anterior cruciate ligament ruptures. Genet Mol Res 10:4158–4165. doi:10.4238/2011.October.31.1

    Article  CAS  PubMed  Google Scholar 

  9. Godoy-Santos A, Cunha MV, Ortiz RT et al (2013) MMP-1 promoter polymorphism is associated with primary tendinopathy of the posterior tibial tendon. J Orthop Res 31:1103–1107. doi:10.1002/jor.22321

    Article  CAS  PubMed  Google Scholar 

  10. Somerville RPT, Oblander SA, Apte SS (2003) Matrix metalloproteinases: old dogs with new tricks. Genome Biol 4:216. doi:10.1186/gb-2003-4-6-216

    Article  PubMed Central  PubMed  Google Scholar 

  11. Birkedal-Hansen H, Moore WGI, Bodden MK et al (1993) Matrix metalloproteinases: a review. Crit Rev Oral Biol Med 4:197–250. doi:10.1177/10454411930040020401

    CAS  PubMed  Google Scholar 

  12. Shapiro SD, Fliszar CJ, Broekelmann TJ et al (1995) Activation of the 92-kDa gelatinase by stromelysin and 4-aminophenylmercuric acetate. J Biol Chem 270:6351–6356

    Article  CAS  PubMed  Google Scholar 

  13. Imai K, Yokohama Y, Nakanishi I et al (1995) Matrix metalloproteinase 7 (matrilysin) from human rectal carcinoma cells. J Biol Chem 270:6691–6697

    Article  CAS  PubMed  Google Scholar 

  14. Ye S, Eriksson P, Hamsten A et al (1996) Progression of coronary atherosclerosis is associated with a common genetic variant of the human stromelysin-1 promoter which results in reduced gene expression. J Biol Chem 271:13055–13060

    Article  CAS  PubMed  Google Scholar 

  15. Burger MC, de Wet H, Collins M (2015) Interleukin and growth factor gene variants and risk of carpal tunnel syndrome. Gene 564:67–72. doi:10.1016/j.gene.2015.03.047

    Article  CAS  PubMed  Google Scholar 

  16. Little J, Higgins JPT, Ioannidis JP et al (2009) STrengthening the REporting of Genetic Association studies (STREGA)—an extension of the STROBE statement. Eur J Clin Invest 39:247–266. doi:10.1111/j.1365-2362.2009.02125.x

    Article  PubMed Central  PubMed  Google Scholar 

  17. Quintana-Murci L, Harmant C, Quach H et al (2010) Strong maternal Khoisan contribution to the South African coloured population: a case of gender-biased admixture. Am J Hum Genet 86:611–620. doi:10.1016/j.ajhg.2010.02.014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. SASHG (2013) Guidelines from the SASHG Committee for publication purposes regarding: nomenclature for South African populations. 1

  19. Gauderman W, Morrison J (2006) QUANTO 1.1: a computer program for power and sample size calculations for genetic-epidemiology studies. http://hydra.usc.edu/gxe

  20. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  21. Rousset F (2008) Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  22. R Core Team (2015) R: a language and environment for statistical computing

  23. Warnes G, Gorjanc G, Leisch F et al (2011) Genetics: a package for population genetics (Version 1.3.6)

  24. Epstein MP, Satten GA (2003) Inference on haplotype effects in case–control studies using unphased genotype data. Am J Hum Genet 73:1316–1329. doi:10.1086/380204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Duncan RD, Epstein MP, Satten GA Case-control haplotype inference (CHAPLIN). Version 1.2

  26. Diao E, Shao F, Liebenberg E et al (2005) Carpal tunnel pressure alters median nerve function in a dose-dependent manner: a rabbit model for carpal tunnel syndrome. Anim Res 23:218–223

    Google Scholar 

  27. Gelberman RH, Hergenroeder PT, Hargens AR et al (1981) The carpal tunnel syndrome: a study of carpal canal pressures. J Bone Joint Surg 63:380–383

    CAS  PubMed  Google Scholar 

  28. Jormsjö S, Ye S, Moritz J et al (2000) Allele-specific regulation of matrix metalloproteinase-12 dimensions in diabetic patients with manifest coronary artery disease. Circ Res 86:998–1003. doi:10.1161/01.RES.86.9.998

    Article  PubMed  Google Scholar 

  29. Rutter JL, Mitchell TI, Butticè G et al (1998) A single nucleotide polymorphism in the matrix metalloproteinase-1 promoter creates an Ets binding site and augments transcription advances. Cancer Res 58:5321–5325

    CAS  PubMed  Google Scholar 

  30. Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4:1073–1082. doi:10.1038/nprot.2009.86

    Article  CAS  PubMed  Google Scholar 

  31. Ye S, Patodi N, Walker-Bone K et al (2007) Variation in the matrix metalloproteinase-3, -7, -12 and -13 genes is associated with functional status in rheumatoid arthritis. Int J Immunogenet 34:81–85. doi:10.1111/j.1744-313X.2007.00664.x

    Article  CAS  PubMed  Google Scholar 

  32. Barlas IO, Sezgin M, Erdal ME et al (2009) Association of (-1,607) 1G/2G polymorphism of matrix metalloproteinase-1 gene with knee osteoarthritis in the Turkish population (knee osteoarthritis and MMPs gene polymorphisms). Rheumatol Int 29:383–388. doi:10.1007/s00296-008-0705-6

    Article  CAS  PubMed  Google Scholar 

  33. Kalichman L, Hunter DJ (2008) The genetics of intervertebral disc degeneration. Associated genes. Joint Bone Spine 75:388–396. doi:10.1016/j.jbspin.2007.11.002

    Article  CAS  PubMed  Google Scholar 

  34. Aulisa L, Papaleo P, Pola E et al (2007) Association between IL-6 and MMP-3 gene polymorphisms and adolescent idiopathic scoliosis: a case-control study. Spine 32:2700–2702. doi:10.1097/BRS.0b013e31815a5943

    Article  PubMed  Google Scholar 

  35. Jones GC, Corps AN, Pennington CJ et al (2006) Expression profiling of metalloproteinases and tissue inhibitors of metalloproteinases in normal and degenerate human achilles tendon. Arthritis Rheum 54:832–842. doi:10.1002/art.21672

    Article  CAS  PubMed  Google Scholar 

  36. Souslova V, Townsend PA, Mann J et al (2010) Allele-specific regulation of matrix metalloproteinase-3 gene by transcription factor NFkappaB. PLoS ONE 5:e9902. doi:10.1371/journal.pone.0009902

    Article  PubMed Central  PubMed  Google Scholar 

  37. Godoy-Santos A, Ortiz RT, Junior RM et al (2014) MMP-8 polymorphism is genetic marker to tendinopathy primary posterior tibial tendon. Scand J Med Sci Sport 24:220–223. doi:10.1111/j.1600-0838.2012.01469.x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Ajmal Ikram, Dr. Adriaan Smit and Dr. David Rodseth, as well as the nurses from the various clinics, for their help in participant identification. This study was supported in part by funds from the National Research Foundation (NRF) of South Africa, University of Cape Town, and the South African Medical Research Council. The grant holder acknowledges that opinions, findings and conclusions or recommendations expressed in any publication generated by the NRF supported research are that of the author(s) and that the NRF accepts no liability whatsoever in this regard. Author M.C. and A/Prof Alison September have filed patents on the application of specific sequence variations, which include those in this manuscript, related to risk assessment of Achilles tendon and anterior cruciate ligament injuries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm Collins.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 110 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burger, M.C., De Wet, H. & Collins, M. Matrix metalloproteinase genes on chromosome 11q22 and risk of carpal tunnel syndrome. Rheumatol Int 36, 413–419 (2016). https://doi.org/10.1007/s00296-015-3385-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-015-3385-z

Keywords

Navigation