Skip to main content

Advertisement

Log in

Role of integrins and their ligands in osteoarthritic cartilage

  • Review Article - Pathology Review
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Osteoarthritis (OA) is a degenerative disease, which is characterized by articular cartilage destruction, and mainly affects the older people. The extracellular matrix (ECM) provides a vital cellular environment, and interactions between the cell and ECM are important in regulating many biological processes, including cell growth, differentiation, and survival. However, the pathogenesis of this disease is not fully elucidated, and it cannot be cured totally. Integrins are one of the major receptors in chondrocytes. A number of studies confirmed that the chondrocytes express several integrins including α5β1, αVβ3, αVβ5, α6β1, α1β1, α2β1, α10β1, and α3β1, and some integrins ligands might act as the OA progression biomarkers. This review focuses on the functional role of integrins and their extracellular ligands in OA progression, especially OA cartilage. Clear understanding of the role of integrins and their ligands in OA cartilage may have impact on future development of successful therapeutic approaches to OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hunter DJ, Felson DT (2006) Osteoarthritis. BMJ 332:639–642

    PubMed Central  PubMed  Google Scholar 

  2. Arden N, Nevitt MC (2006) Osteoarthritis: epidemiology. Best Pract Res Clin Rheumatol 20:3–25

    PubMed  Google Scholar 

  3. Kuettner KE, Aydelotte MB, Thonar EJ (1991) Articular cartilage matrix and structure: a mini review. J Rheumatol Suppl 27:46–48

    CAS  PubMed  Google Scholar 

  4. Loeser RF (2009) Aging and osteoarthritis: the role of chondrocyte senescence and aging changes in the cartilage matrix. Osteoarthritis Cartilage 17:971–979

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Roughley PJ (2001) Articular cartilage and changes in arthritis: noncollagenous proteins and proteoglycans in the extracellular matrix of cartilage. Arthritis Res 3:342–347

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Eyre D (2002) Collagen of articular cartilage. Arthritis Res 4:30–35

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Davidson RK, Waters JG, Kevorkian L, Darrah C, Cooper A, Donell ST, Clark IM (2006) Expression profiling of metalloproteinases and their inhibitors in synovium and cartilage. Arthritis Res Ther 8:R124

    PubMed Central  PubMed  Google Scholar 

  8. Goldring MB, Goldring SR (2007) Osteoarthritis. J Cell Physiol 213:626–634

    CAS  PubMed  Google Scholar 

  9. Hashimoto M, Nakasa T, Hikata T, Asahara H (2008) Molecular network of cartilage homeostasis and osteoarthritis. Med Res Rev 28:464–481

    CAS  PubMed  Google Scholar 

  10. Lin CQ, Bissell MJ (1993) Multi-faceted regulation of cell differentiation by extracellular matrix. FASEB J 7:737–743

    CAS  PubMed  Google Scholar 

  11. Adams JC, Watt FM (1993) Regulation of development and differentiation by the extracellular matrix. Development 117:1183–1198

    CAS  PubMed  Google Scholar 

  12. Reid DL, Aydelotte MB, Mollenhauer J (2000) Cell attachment, collagen binding, and receptor analysis on bovine articular chondrocytes. J Orthop Res 18:364–373

    CAS  PubMed  Google Scholar 

  13. Tamkun JW, DeSimone DW, Fonda D, Patel RS, Buck C, Horwitz AF, Hynes RO (1986) Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell 46:271–282

    CAS  PubMed  Google Scholar 

  14. Brakebusch C, Bouvard D, Stanchi F, Sakai T, Fassler R (2002) Integrins in invasive growth. J Clin Invest 109:999–1006

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    CAS  PubMed  Google Scholar 

  16. Gahmberg CG, Fagerholm SC, Nurmi SM, Chavakis T, Marchesan S, Gronholm M (2009) Regulation of integrin activity and signalling. Biochim Biophys Acta 1790:431–444

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Schwartz MA, Ginsberg MH (2002) Networks and crosstalk: integrin signalling spreads. Nat Cell Biol 4:E65–E68

    CAS  PubMed  Google Scholar 

  18. Shattil SJ, Kim C, Ginsberg MH (2010) The final steps of integrin activation: the end game. Nat Rev Mol Cell Biol 11:288–300

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Kurtis MS, Schmidt TA, Bugbee WD, Loeser RF, Sah RL (2003) Integrin-mediated adhesion of human articular chondrocytes to cartilage. Arthritis Rheum 48:110–118

    CAS  PubMed  Google Scholar 

  20. Kim SJ, Kim EJ, Kim YH, Hahn SB, Lee JW (2003) The modulation of integrin expression by the extracellular matrix in articular chondrocytes. Yonsei Med J 44:493–501

    CAS  PubMed  Google Scholar 

  21. Lahiji K, Polotsky A, Hungerford DS, Frondoza CG (2004) Cyclic strain stimulates proliferative capacity, alpha2 and alpha5 integrin, gene marker expression by human articular chondrocytes propagated on flexible silicone membranes. In Vitro Cell Dev Biol Anim 40:138–142

    CAS  PubMed  Google Scholar 

  22. Lapadula G, Iannone F, Zuccaro C, Grattagliano V, Covelli M, Patella V, Lo BG, Pipitone V (1997) Integrin expression on chondrocytes: correlations with the degree of cartilage damage in human osteoarthritis. Clin Exp Rheumatol 15:247–254

    CAS  PubMed  Google Scholar 

  23. Loeser RF, Sadiev S, Tan L, Goldring MB (2000) Integrin expression by primary and immortalized human chondrocytes: evidence of a differential role for alpha1beta1 and alpha2beta1 integrins in mediating chondrocyte adhesion to types II and VI collagen. Osteoarthritis Cartilage 8:96–105

    CAS  PubMed  Google Scholar 

  24. Salter DM, Hughes DE, Simpson R, Gardner DL (1992) Integrin expression by human articular chondrocytes. Br J Rheumatol 31:231–234

    CAS  PubMed  Google Scholar 

  25. Iannone F, Corrado A, Grattagliano V, Cantatore FP, Patella V, Lapadula G (2001) Phenotyping of chondrocytes from human osteoarthritic cartilage: chondrocyte expression of beta integrins and correlation with anatomic injury. Reumatismo 53:122–130

    PubMed  Google Scholar 

  26. Forster C, Kociok K, Shakibaei M, Merker HJ, Vormann J, Gunther T, Stahlmann R (1996) Integrins on joint cartilage chondrocytes and alterations by ofloxacin or magnesium deficiency in immature rats. Arch Toxicol 70:261–270

    CAS  PubMed  Google Scholar 

  27. Salter DM, Godolphin JL, Gourlay MS (1995) Chondrocyte heterogeneity: immunohistologically defined variation of integrin expression at different sites in human fetal knees. J Histochem Cytochem 43:447–457

    CAS  PubMed  Google Scholar 

  28. Gong J, Ko TC, Brattain MG (1998) Disruption of fibronectin binding to the alpha 5 beta 1 integrin stimulates the expression of cyclin-dependent kinases and DNA synthesis through activation of extracellular signal-regulated kinase. J Biol Chem 273:1662–1669

    CAS  PubMed  Google Scholar 

  29. Ruoslahti E, Pierschbacher MD (1987) New perspectives in cell adhesion: RGD and integrins. Science 238:491–497

    CAS  PubMed  Google Scholar 

  30. Miyauchi A, Alvarez J, Greenfield EM, Teti A, Grano M, Colucci S, Zambonin-Zallone A, Ross FP, Teitelbaum SL, Cheresh D, Et A (1991) Recognition of osteopontin and related peptides by an alpha v beta 3 integrin stimulates immediate cell signals in osteoclasts. J Biol Chem 266:20369–20374

    CAS  PubMed  Google Scholar 

  31. Nikkari L, Haapasalmi K, Aho H, Torvinen A, Sheppard D, Larjava H, Heino J (1995) Localization of the alpha v subfamily of integrins and their putative ligands in synovial lining cell layer. J Rheumatol 22:16–23

    CAS  PubMed  Google Scholar 

  32. Camper L, Hellman U, Lundgren-Akerlund E (1998) Isolation, cloning, and sequence analysis of the integrin subunit alpha10, a beta1-associated collagen binding integrin expressed on chondrocytes. J Biol Chem 273:20383–20389

    CAS  PubMed  Google Scholar 

  33. Enomoto M, Leboy PS, Menko AS, Boettiger D (1993) Beta 1 integrins mediate chondrocyte interaction with type I collagen, type II collagen, and fibronectin. Exp Cell Res 205:276–285

    CAS  PubMed  Google Scholar 

  34. Pfaff M, Gohring W, Brown JC, Timpl R (1994) Binding of purified collagen receptors (alpha 1 beta 1, alpha 2 beta 1) and RGD-dependent integrins to laminins and laminin fragments. Eur J Biochem 225:975–984

    CAS  PubMed  Google Scholar 

  35. Durr J, Lammi P, Goodman SL, Aigner T, von der Mark K (1996) Identification and immunolocalization of laminin in cartilage. Exp Cell Res 222:225–233

    CAS  PubMed  Google Scholar 

  36. Delwel GO, de Melker AA, Hogervorst F, Jaspars LH, Fles DL, Kuikman I, Lindblom A, Paulsson M, Timpl R, Sonnenberg A (1994) Distinct and overlapping ligand specificities of the alpha 3A beta 1 and alpha 6A beta 1 integrins: recognition of laminin isoforms. Mol Biol Cell 5:203–215

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Belkin AM, Stepp MA (2000) Integrins as receptors for laminins. Microsc Res Tech 51:280–301

    CAS  PubMed  Google Scholar 

  38. Wang H, Kandel RA (2004) Chondrocytes attach to hyaline or calcified cartilage and bone. Osteoarthritis Cartilage 12:56–64

    PubMed  Google Scholar 

  39. Kurtis MS, Tu BP, Gaya OA, Mollenhauer J, Knudson W, Loeser RF, Knudson CB, Sah RL (2001) Mechanisms of chondrocyte adhesion to cartilage: role of beta1-integrins, CD44, and annexin V. J Orthop Res 19:1122–1130

    CAS  PubMed  Google Scholar 

  40. Loeser RF (1997) Growth factor regulation of chondrocyte integrins. Differential effects of insulin-like growth factor 1 and transforming growth factor beta on alpha 1 beta 1 integrin expression and chondrocyte adhesion to type VI collagen. Arthritis Rheum 40:270–276

    CAS  PubMed  Google Scholar 

  41. Loeser RF (1994) Modulation of integrin-mediated attachment of chondrocytes to extracellular matrix proteins by cations, retinoic acid, and transforming growth factor beta. Exp Cell Res 211:17–23

    CAS  PubMed  Google Scholar 

  42. Adams MA (2006) The mechanical environment of chondrocytes in articular cartilage. Biorheology 43:537–545

    PubMed  Google Scholar 

  43. Perera PM, Wypasek E, Madhavan S, Rath-Deschner B, Liu J, Nam J, Rath B, Huang Y, Deschner J, Piesco N, Wu C, Agarwal S (2010) Mechanical signals control SOX-9, VEGF, and c-Myc expression and cell proliferation during inflammation via integrin-linked kinase, B-Raf, and ERK1/2-dependent signaling in articular chondrocytes. Arthritis Res Ther 12:R106

    PubMed Central  PubMed  Google Scholar 

  44. Xu GK, Yang C, Du J, Feng XQ (2014) Integrin activation and internalization mediated by extracellular matrix elasticity: a biomechanical model. J Biomech 47:1479–1484

    PubMed  Google Scholar 

  45. Baker EL, Zaman MH (2010) The biomechanical integrin. J Biomech 43:38–44

    PubMed Central  PubMed  Google Scholar 

  46. Kock LM, Schulz RM, van Donkelaar CC, Thummler CB, Bader A, Ito K (2009) RGD-dependent integrins are mechanotransducers in dynamically compressed tissue-engineered cartilage constructs. J Biomech 42:2177–2182

    PubMed  Google Scholar 

  47. Millward-Sadler SJ, Salter DM (2004) Integrin-dependent signal cascades in chondrocyte mechanotransduction. Ann Biomed Eng 32:435–446

    CAS  PubMed  Google Scholar 

  48. Holledge MM, Millward-Sadler SJ, Nuki G, Salter DM (2008) Mechanical regulation of proteoglycan synthesis in normal and osteoarthritic human articular chondrocytes—roles for alpha5 and alphaVbeta5 integrins. Biorheology 45:275–288

    PubMed  Google Scholar 

  49. Wright MO, Nishida K, Bavington C, Godolphin JL, Dunne E, Walmsley S, Jobanputra P, Nuki G, Salter DM (1997) Hyperpolarisation of cultured human chondrocytes following cyclical pressure-induced strain: evidence of a role for alpha 5 beta 1 integrin as a chondrocyte mechanoreceptor. J Orthop Res 15:742–747

    CAS  PubMed  Google Scholar 

  50. Wright M, Jobanputra P, Bavington C, Salter DM, Nuki G (1996) Effects of intermittent pressure-induced strain on the electrophysiology of cultured human chondrocytes: evidence for the presence of stretch-activated membrane ion channels. Clin Sci (Lond) 90:61–71

    CAS  Google Scholar 

  51. Jablonski CL, Ferguson S, Pozzi A, Clark AL (2014) Integrin alpha1beta1 participates in chondrocyte transduction of osmotic stress. Biochem Biophys Res Commun 445:184–190

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Aydelotte MB, Raiss RX, Caterson B, Kuettner KE (1992) Influence of interleukin-1 on the morphology and proteoglycan metabolism of cultured bovine articular chondrocytes. Connect Tissue Res 28:143–159

    CAS  PubMed  Google Scholar 

  53. Amin AR, Attur M, Abramson SB (1999) Nitric oxide synthase and cyclooxygenases: distribution, regulation, and intervention in arthritis. Curr Opin Rheumatol 11:202–209

    CAS  PubMed  Google Scholar 

  54. Chowdhury TT, Bader DL, Lee DA (2006) Dynamic compression counteracts IL-1beta induced iNOS and COX-2 activity by human chondrocytes cultured in agarose constructs. Biorheology 43:413–429

    PubMed  Google Scholar 

  55. Chowdhury TT, Appleby RN, Salter DM, Bader DA, Lee DA (2006) Integrin-mediated mechanotransduction in IL-1beta stimulated chondrocytes. Biomech Model Mechanobiol 5:192–201

    CAS  PubMed  Google Scholar 

  56. Chowdhury TT, Akanji OO, Salter DM, Bader DL, Lee DA (2008) Dynamic compression influences interleukin-1beta-induced nitric oxide and prostaglandin E2 release by articular chondrocytes via alterations in iNOS and COX-2 expression. Biorheology 45:257–274

    CAS  PubMed  Google Scholar 

  57. Orazizadeh M, Lee HS, Groenendijk B, Sadler SJ, Wright MO, Lindberg FP, Salter DM (2008) CD47 associates with alpha 5 integrin and regulates responses of human articular chondrocytes to mechanical stimulation in an in vitro model. Arthritis Res Ther 10:R4

    PubMed Central  PubMed  Google Scholar 

  58. Orazizadeh M, Cartlidge C, Wright MO, Millward-Sadler SJ, Nieman J, Halliday BP, Lee HS, Salter DM (2006) Mechanical responses and integrin associated protein expression by human ankle chondrocytes. Biorheology 43:249–258

    CAS  PubMed  Google Scholar 

  59. Lee HS, Millward-Sadler SJ, Wright MO, Nuki G, Al-Jamal R, Salter DM (2002) Activation of Integrin-RACK1/PKCalpha signalling in human articular chondrocyte mechanotransduction. Osteoarthritis Cartilage 10:890–897

    PubMed  Google Scholar 

  60. Whitney NP, Lamb AC, Louw TM, Subramanian A (2012) Integrin-mediated mechanotransduction pathway of low-intensity continuous ultrasound in human chondrocytes. Ultrasound Med Biol 38:1734–1743

    PubMed Central  PubMed  Google Scholar 

  61. Hirsch MS, Lunsford LE, Trinkaus-Randall V, Svoboda KK (1997) Chondrocyte survival and differentiation in situ are integrin mediated. Dev Dyn 210:249–263

    CAS  PubMed  Google Scholar 

  62. Goessler UR, Bugert P, Bieback K, Sadick H, Baisch A, Hormann K, Riedel F (2006) In vitro analysis of differential expression of collagens, integrins, and growth factors in cultured human chondrocytes. Otolaryngol Head Neck Surg 134:510–515

    PubMed  Google Scholar 

  63. Pulai JI, Del CMJ, Loeser RF (2002) The alpha5beta1 integrin provides matrix survival signals for normal and osteoarthritic human articular chondrocytes in vitro. Arthritis Rheum 46:1528–1535

    CAS  PubMed  Google Scholar 

  64. Raducanu A, Hunziker EB, Drosse I, Aszodi A (2009) Beta1 integrin deficiency results in multiple abnormalities of the knee joint. J Biol Chem 284:23780–23792

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Aszodi A, Hunziker EB, Brakebusch C, Fassler R (2003) Beta1 integrins regulate chondrocyte rotation, G1 progression, and cytokinesis. Genes Dev 17:2465–2479

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Ramachandrula A, Tiku K, Tiku ML (1992) Tripeptide RGD-dependent adhesion of articular chondrocytes to synovial fibroblasts. J Cell Sci 101(Pt 4):859–871

    CAS  PubMed  Google Scholar 

  67. Tanaka N, Ikeda Y, Yamaguchi T, Furukawa H, Mitomi H, Nakagawa T, Tohma S, Fukui N (2013) alpha5beta1 integrin induces the expression of noncartilaginous procollagen gene expression in articular chondrocytes cultured in monolayers. Arthritis Res Ther 15:R127

    PubMed Central  PubMed  Google Scholar 

  68. Goessler UR, Bugert P, Bieback K, Huber K, Fleischer LI, Hormann K, Riedel F (2005) Differential modulation of integrin expression in chondrocytes during expansion for tissue engineering. In Vivo 19:501–507

    CAS  PubMed  Google Scholar 

  69. Varas L, Ohlsson LB, Honeth G, Olsson A, Bengtsson T, Wiberg C, Bockermann R, Jarnum S, Richter J, Pennington D, Johnstone B, Lundgren-Akerlund E, Kjellman C (2007) Alpha10 integrin expression is up-regulated on fibroblast growth factor-2-treated mesenchymal stem cells with improved chondrogenic differentiation potential. Stem Cells Dev 16:965–978

    CAS  PubMed  Google Scholar 

  70. Marshall CJ (1994) MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Curr Opin Genet Dev 4:82–89

    CAS  PubMed  Google Scholar 

  71. Schulze-Tanzil G, Mobasheri A, de Souza P, John T, Shakibaei M (2004) Loss of chondrogenic potential in dedifferentiated chondrocytes correlates with deficient Shc-Erk interaction and apoptosis. Osteoarthritis Cartilage 12:448–458

    PubMed  Google Scholar 

  72. de Crombrugghe B, Lefebvre V, Behringer RR, Bi W, Murakami S, Huang W (2000) Transcriptional mechanisms of chondrocyte differentiation. Matrix Biol 19:389–394

    PubMed  Google Scholar 

  73. Woods D, Cherwinski H, Venetsanakos E, Bhat A, Gysin S, Humbert M, Bray PF, Saylor VL, McMahon M (2001) Induction of beta3-integrin gene expression by sustained activation of the Ras-regulated Raf-MEK-extracellular signal-regulated kinase signaling pathway. Mol Cell Biol 21:3192–3205

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Fukui N, Ikeda Y, Tanaka N, Wake M, Yamaguchi T, Mitomi H, Ishida S, Furukawa H, Hamada Y, Miyamoto Y, Sawabe M, Tashiro T, Katsuragawa Y, Tohma S (2011) Alphavbeta5 integrin promotes dedifferentiation of monolayer-cultured articular chondrocytes. Arthritis Rheum 63:1938–1949

    CAS  PubMed  Google Scholar 

  75. Attur MG, Dave MN, Clancy RM, Patel IR, Abramson SB, Amin AR (2000) Functional genomic analysis in arthritis-affected cartilage: yin-yang regulation of inflammatory mediators by alpha 5 beta 1 and alpha V beta 3 integrins. J Immunol 164:2684–2691

    CAS  PubMed  Google Scholar 

  76. Zemmyo M, Meharra EJ, Kuhn K, Creighton-Achermann L, Lotz M (2003) Accelerated, aging-dependent development of osteoarthritis in alpha1 integrin-deficient mice. Arthritis Rheum 48:2873–2880

    CAS  PubMed  Google Scholar 

  77. Parekh R, Lorenzo MK, Shin SY, Pozzi A, Clark AL (2014) Integrin alpha1beta1 differentially regulates cytokine-mediated responses in chondrocytes. Osteoarthritis Cartilage 22:499–508

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Almonte-Becerril M, Costell M, Kouri JB (2014) Changes in the integrins expression are related with the osteoarthritis severity in an experimental animal model in rats. J Orthop Res 9:1161–1166

    Google Scholar 

  79. Ellman MB, Yan D, Ahmadinia K, Chen D, An HS, Im HJ (2013) Fibroblast growth factor control of cartilage homeostasis. J Cell Biochem 114:735–742

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Schmidt MB, Chen EH, Lynch SE (2006) A review of the effects of insulin-like growth factor and platelet derived growth factor on in vivo cartilage healing and repair. Osteoarthritis Cartilage 14:403–412

    CAS  PubMed  Google Scholar 

  81. Ellsworth JL, Berry J, Bukowski T, Claus J, Feldhaus A, Holderman S, Holdren MS, Lum KD, Moore EE, Raymond F, Ren H, Shea P, Sprecher C, Storey H, Thompson DL, Waggie K, Yao L, Fernandes RJ, Eyre DR, Hughes SD (2002) Fibroblast growth factor-18 is a trophic factor for mature chondrocytes and their progenitors. Osteoarthritis Cartilage 10:308–320

    CAS  PubMed  Google Scholar 

  82. Uchii M, Tamura T, Suda T, Kakuni M, Tanaka A, Miki I (2008) Role of fibroblast growth factor 8 (FGF8) in animal models of osteoarthritis. Arthritis Res Ther 10:R90

    PubMed Central  PubMed  Google Scholar 

  83. Loeser RF (1997) Growth factor regulation of chondrocyte integrins. Differential effects of insulin-like growth factor 1 and transforming growth factor beta on alpha 1 beta 1 integrin expression and chondrocyte adhesion to type VI collagen. Arthritis Rheum 40:270–276

    CAS  PubMed  Google Scholar 

  84. Loeser RF, Shanker G, Carlson CS, Gardin JF, Shelton BJ, Sonntag WE (2000) Reduction in the chondrocyte response to insulin-like growth factor 1 in aging and osteoarthritis: studies in a non-human primate model of naturally occurring disease. Arthritis Rheum 43:2110–2120

    CAS  PubMed  Google Scholar 

  85. Loeser RF (2002) Integrins and cell signaling in chondrocytes. Biorheology 39:119–124

    CAS  PubMed  Google Scholar 

  86. Enomoto-Iwamoto M, Iwamoto M, Nakashima K, Mukudai Y, Boettiger D, Pacifici M, Kurisu K, Suzuki F (1997) Involvement of alpha5beta1 integrin in matrix interactions and proliferation of chondrocytes. J Bone Miner Res 12:1124–1132

    CAS  PubMed  Google Scholar 

  87. Clancy RM, Rediske J, Tang X, Nijher N, Frenkel S, Philips M, Abramson SB (1997) Outside-in signaling in the chondrocyte. Nitric oxide disrupts fibronectin-induced assembly of a subplasmalemmal actin/rho A/focal adhesion kinase signaling complex. J Clin Invest 100:1789–1796

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Pfander D, Rahmanzadeh R, Scheller EE (1999) Presence and distribution of collagen II, collagen I, fibronectin, and tenascin in rabbit normal and osteoarthritic cartilage. J Rheumatol 26:386–394

    CAS  PubMed  Google Scholar 

  89. Pullig O, Weseloh G, Gauer S, Swoboda B (2000) Osteopontin is expressed by adult human osteoarthritic chondrocytes: protein and mRNA analysis of normal and osteoarthritic cartilage. Matrix Biol 19:245–255

    CAS  PubMed  Google Scholar 

  90. Wurster NB, Lust G (1984) Synthesis of fibronectin in normal and osteoarthritic articular cartilage. Biochim Biophys Acta 800:52–58

    CAS  PubMed  Google Scholar 

  91. Brown RA, Jones KL (1990) The synthesis and accumulation of fibronectin by human articular cartilage. J Rheumatol 17:65–72

    CAS  PubMed  Google Scholar 

  92. Rees JA, Ali SY, Brown RA (1987) Ultrastructural localisation of fibronectin in human osteoarthritic articular cartilage. Ann Rheum Dis 46:816–822

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Mapp PI, Revell PA (1985) Fibronectin production by synovial intimal cells. Rheumatol Int 5:229–237

    CAS  PubMed  Google Scholar 

  94. Lust G, Burton-Wurster N, Leipold H (1987) Fibronectin as a marker for osteoarthritis. J Rheumatol 14:28–29

    CAS  PubMed  Google Scholar 

  95. Yasuda T, Poole AR (2002) A fibronectin fragment induces type II collagen degradation by collagenase through an interleukin-1-mediated pathway. Arthritis Rheum 46:138–148

    CAS  PubMed  Google Scholar 

  96. Homandberg GA, Wen C, Hui F (1998) Cartilage damaging activities of fibronectin fragments derived from cartilage and synovial fluid. Osteoarthritis Cartilage 6:231–244

    CAS  PubMed  Google Scholar 

  97. Xie DL, Meyers R, Homandberg GA (1992) Fibronectin fragments in osteoarthritic synovial fluid. J Rheumatol 19:1448–1452

    CAS  PubMed  Google Scholar 

  98. Ding L, Guo D, Homandberg GA (2009) Fibronectin fragments mediate matrix metalloproteinase upregulation and cartilage damage through proline rich tyrosine kinase 2, c-src, NF-kappaB and protein kinase Cdelta. Osteoarthritis Cartilage 17:1385–1392

    CAS  PubMed  Google Scholar 

  99. Werb Z, Tremble PM, Behrendtsen O, Crowley E, Damsky CH (1989) Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression. J Cell Biol 109:877–889

    CAS  PubMed  Google Scholar 

  100. Forsyth CB, Pulai J, Loeser RF (2002) Fibronectin fragments and blocking antibodies to alpha2beta1 and alpha5beta1 integrins stimulate mitogen-activated protein kinase signaling and increase collagenase 3 (matrix metalloproteinase 13) production by human articular chondrocytes. Arthritis Rheum 46:2368–2376

    CAS  PubMed  Google Scholar 

  101. Homandberg GA, Costa V, Ummadi V, Pichika R (2002) Antisense oligonucleotides to the integrin receptor subunit alpha(5) decrease fibronectin fragment mediated cartilage chondrolysis. Osteoarthritis Cartilage 10:381–393

    CAS  PubMed  Google Scholar 

  102. Homandberg GA, Costa V, Wen C (2002) Fibronectin fragments active in chondrocytic chondrolysis can be chemically cross-linked to the alpha5 integrin receptor subunit. Osteoarthritis Cartilage 10:938–949

    CAS  PubMed  Google Scholar 

  103. Chang ZL (2010) Important aspects of Toll-like receptors, ligands and their signaling pathways. Inflamm Res 59:791–808

    CAS  PubMed  Google Scholar 

  104. Sillat T, Barreto G, Clarijs P, Soininen A, Ainola M, Pajarinen J, Korhonen M, Konttinen YT, Sakalyte R, Hukkanen M, Ylinen P, Nordstrom DC (2013) Toll-like receptors in human chondrocytes and osteoarthritic cartilage. Acta Orthop 84:585–592

    PubMed Central  PubMed  Google Scholar 

  105. Kim HA, Cho ML, Choi HY, Yoon CS, Jhun JY, Oh HJ, Kim HY (2006) The catabolic pathway mediated by Toll-like receptors in human osteoarthritic chondrocytes. Arthritis Rheum 54:2152–2163

    CAS  PubMed  Google Scholar 

  106. Gondokaryono SP, Ushio H, Niyonsaba F, Hara M, Takenaka H, Jayawardana ST, Ikeda S, Okumura K, Ogawa H (2007) The extra domain A of fibronectin stimulates murine mast cells via toll-like receptor 4. J Leukoc Biol 82:657–665

    CAS  PubMed  Google Scholar 

  107. Sofat N, Robertson SD, Wait R (2012) Fibronectin III 13-14 domains induce joint damage via toll-like receptor 4 activation and synergize with interleukin-1 and tumour necrosis factor. J Innate Immun 4:69–79

    CAS  PubMed  Google Scholar 

  108. Pacifici M, Iwamoto M, Golden EB, Leatherman JL, Lee YS, Chuong CM (1993) Tenascin is associated with articular cartilage development. Dev Dyn 198:123–134

    CAS  PubMed  Google Scholar 

  109. Patel L, Sun W, Glasson SS, Morris EA, Flannery CR, Chockalingam PS (2011) Tenascin-C induces inflammatory mediators and matrix degradation in osteoarthritic cartilage. BMC Musculoskelet Disord 12:164

    PubMed Central  CAS  PubMed  Google Scholar 

  110. Hasegawa M, Hirata H, Sudo A, Kato K, Kawase D, Kinoshita N, Yoshida T, Uchida A (2004) Tenascin-C concentration in synovial fluid correlates with radiographic progression of knee osteoarthritis. J Rheumatol 31:2021–2026

    CAS  PubMed  Google Scholar 

  111. Chockalingam PS, Glasson SS, Lohmander LS (2013) Tenascin-C levels in synovial fluid are elevated after injury to the human and canine joint and correlate with markers of inflammation and matrix degradation. Osteoarthritis Cartilage 21:339–345

    CAS  PubMed  Google Scholar 

  112. Nakoshi Y, Hasegawa M, Akeda K, Iino T, Sudo A, Yoshida T, Uchida A (2010) Distribution and role of tenascin-C in human osteoarthritic cartilage. J Orthop Sci 15:666–673

    CAS  PubMed  Google Scholar 

  113. Sofat N, Robertson SD, Hermansson M, Jones J, Mitchell P, Wait R (2012) Tenascin-C fragments are endogenous inducers of cartilage matrix degradation. Rheumatol Int 32:2809–2817

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Okamura N, Hasegawa M, Nakoshi Y, Iino T, Sudo A, Imanaka-Yoshida K, Yoshida T, Uchida A (2010) Deficiency of tenascin-C delays articular cartilage repair in mice. Osteoarthritis Cartilage 18:839–848

    CAS  PubMed  Google Scholar 

  115. Asano T, Iwasaki N, Kon S, Kanayama M, Morimoto J, Minami A, Uede T (2014) Alpha9beta1 integrin acts as a critical intrinsic regulator of human rheumatoid arthritis. Rheumatology (Oxford) 53:415–424

    CAS  Google Scholar 

  116. Zhang FJ, Gao SG, Cheng L, Tian J, Xu WS, Luo W, Song Y, Yang Y, Lei GH (2013) The effect of hyaluronic acid on osteopontin and CD44 mRNA of fibroblast-like synoviocytes in patients with osteoarthritis of the knee. Rheumatol Int 33:79–83

    PubMed  Google Scholar 

  117. Honsawek S, Tanavalee A, Sakdinakiattikoon M, Chayanupatkul M, Yuktanandana P (2009) Correlation of plasma and synovial fluid osteopontin with disease severity in knee osteoarthritis. Clin Biochem 42:808–812

    CAS  PubMed  Google Scholar 

  118. Gao SG, Li KH, Zeng KB, Tu M, Xu M, Lei GH (2010) Elevated osteopontin level of synovial fluid and articular cartilage is associated with disease severity in knee osteoarthritis patients. Osteoarthritis Cartilage 18:82–87

    CAS  PubMed  Google Scholar 

  119. Xu M, Zhang L, Zhao L, Gao S, Han R, Su D, Lei G (2013) Phosphorylation of osteopontin in osteoarthritis degenerative cartilage and its effect on matrix metalloprotease 13. Rheumatol Int 33:1313–1319

    CAS  PubMed  Google Scholar 

  120. Attur MG, Dave MN, Stuchin S, Kowalski AJ, Steiner G, Abramson SB, Denhardt DT, Amin AR (2001) Osteopontin: an intrinsic inhibitor of inflammation in cartilage. Arthritis Rheum 44:578–584

    CAS  PubMed  Google Scholar 

  121. Matsui Y, Iwasaki N, Kon S, Takahashi D, Morimoto J, Matsui Y, Denhardt DT, Rittling S, Minami A, Uede T (2009) Accelerated development of aging-associated and instability-induced osteoarthritis in osteopontin-deficient mice. Arthritis Rheum 60:2362–2371

    CAS  PubMed  Google Scholar 

  122. Cheng C, Gao S, Lei G (2014) Association of osteopontin with osteoarthritis. Rheumatol Int. doi:10.1007/s00296-014-3036-9 [Epub ahead of print]

  123. Ohshima S, Kobayashi H, Yamaguchi N, Nishioka K, Umeshita-Sasai M, Mima T, Nomura S, Kon S, Inobe M, Uede T, Saeki Y (2002) Expression of osteopontin at sites of bone erosion in a murine experimental arthritis model of collagen-induced arthritis: possible involvement of osteopontin in bone destruction in arthritis. Arthritis Rheum 46:1094–1101

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grants from the National Natural Science Foundation of China (No. 81272034, 81201420, 81472130), the Hunan Provincial Innovation Foundation for Postgraduate (CX2012B086), and the Fundamental Research Funds for the Central Universities of Central South University (2013 zzts081).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Hua Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, J., Zhang, FJ. & Lei, GH. Role of integrins and their ligands in osteoarthritic cartilage. Rheumatol Int 35, 787–798 (2015). https://doi.org/10.1007/s00296-014-3137-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-014-3137-5

Keywords

Navigation