Skip to main content
Log in

Proinflammatory cytokines, IL-1β and TNF-α, induce expression of interleukin-34 mRNA via JNK- and p44/42 MAPK-NF-κB pathway but not p38 pathway in osteoblasts

  • Short Communication
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

The aim of this study is to investigate the induction of interleukin-34 (IL-34) and macrophage colony-stimulating factor (M-CSF) mRNA by inflammatory cytokines and the involvement of mitogen-activated protein kinases (MAPKs) in this signaling pathway in human osteoblasts as both IL-34 and M-CSF bind to the same receptor c-FMS. Among four inflammatory cytokines [(IL-1β, IL-6, IL-17, and tumor necrosis factor-α (TNF-α)], IL-34 mRNA expression level was dramatically induced by IL-1β (17-fold) and TNF-α (74-fold). IL-1β and TNF-α activated the intracellular mitogen-activated protein kinases (MAPKs): p44/42 MAPK, p38, and c-Jun N-terminal kinase (JNK) as well as nuclear factor-κB (NF-κB) in osteoblasts. IL-1β- and TNF-α-mediated induction of IL-34 mRNA expression was decreased by JNK inhibitor. Interestingly, although treatment of MEK-1/2 inhibitor showed no reduction in the increase of IL-34 mRNA expression by cytokines, combination of MEK-1/2 inhibitor and JNK inhibitor significantly inhibited IL-1β- and TNF-α-mediated IL-34 mRNA expression level compared to those by each inhibitor alone. On the other hand, M-CSF mRNA expression level was significantly induced by both IL-1β and TNF-α by up to 7- and 11-fold, respectively. IL-1β- and TNF-α-mediated induction of M-CSF mRNA was not affected by p38, JNK, and MEK-1/2 inhibitors. However, NF-κB inhibitor completely inhibited the elevation of M-CSF mRNA expression by these cytokines. These results showed that proinflammatory cytokines, IL-1β and TNF-α, induced the expression of IL-34 mRNA via JNK and p44/42 MAPK but not p38 in human osteoblasts while p38, JNK, and p44/42 MAPK were not involved in the induction of M-CSF mRNA expression by these cytokines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Gravallese EM, Harada Y, Wang JT, Gorn AH, Thornhill TS, Goldring SR (1998) Identification of cell types responsible for bone resorption in rheumatoid arthritis and juvenile rheumatoid arthritis. Am J Pathol 152:943–951

    PubMed  CAS  Google Scholar 

  2. Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289:1504–1508

    Article  PubMed  CAS  Google Scholar 

  3. Yoshida H, Hayashi S, Kunisada T, Ogawa M, Nishikawa S, Okamura H, Sudo T, Shultz LD, Nishikawa S (1990) The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345:442–444

    Article  PubMed  CAS  Google Scholar 

  4. Seitz M, Loetscher P, Fey MF, Tobler A (1994) Constitutive mRNA and protein production of macrophage colony-stimulating factor but not of other cytokines by synovial fibroblasts from rheumatoid arthritis and osteoarthritis patients. Br J Rheumatol 33:613–619

    Article  PubMed  CAS  Google Scholar 

  5. Lagasse E, Weissman IL (1997) Enforced expression of Bcl-2 in monocytes rescues macrophages and partially reverses osteopetrosis in op/op mice. Cell 89:1021–1031

    Article  PubMed  CAS  Google Scholar 

  6. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95:3597–3602

    Article  PubMed  CAS  Google Scholar 

  7. Gravallese EM, Manning C, Tsay A, Naito A, Pan C, Amento E, Goldring SR (2000) Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation factor. Arthritis Rheum 43:250–258

    Article  PubMed  CAS  Google Scholar 

  8. Campbell IK, Rich MJ, Bischof RJ, Hamilton JA (2000) The colony-stimulating factors and collagen-induced arthritis: exacerbation of disease by M-CSF and G-CSF and requirement for endogenous M-CSF. J Leukoc Biol 68:144–150

    PubMed  CAS  Google Scholar 

  9. Bischof RJ, Zafiropoulos D, Hamilton JA, Campbell IK (2000) Exacerbation of acute inflammatory arthritis by the colony-stimulating factors CSF-1 and granulocyte macrophage (GM)-CSF: evidence of macrophage infiltration and local proliferation. Clin Exp Immunol 119:361–367

    Article  PubMed  CAS  Google Scholar 

  10. Chitu V, Stanley ER (2006) Colony-stimulating factor-1 in immunity and inflammation. Curr Opin Immunol 18:39–48

    Article  PubMed  CAS  Google Scholar 

  11. Hamilton JA (2008) Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol 8:533–544

    Article  PubMed  CAS  Google Scholar 

  12. Sato K, Kasono K, Fujii Y, Kawakami M, Tsushima T, Shizume K (1987) Tumor necrosis factor type alpha (cachectin) stimulates mouse osteoblast-like cells (MC3T3–E1) to produce macrophage-colony stimulating activity and prostaglandin E2. Biochem Biophys Res Commun 145:323–329

    Article  PubMed  CAS  Google Scholar 

  13. Felix R, Fleisch H, Elford PR (1989) Bone-resorbing cytokines enhance release of macrophage colony-stimulating activity by the osteoblastic cell MC3T3–E1. Calcif Tissue Int 44:356–360

    Article  PubMed  CAS  Google Scholar 

  14. Lin H, Lee E, Hestir K, Leo C, Huang M, Bosch E, Halenbeck R, Wu G, Zhou A, Behrens D, Hollenbaugh D, Linnemann T, Qin M, Wong J, Chu K, Doberstein SK, Williams LT (2008) Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science 320:807–811

    Article  PubMed  CAS  Google Scholar 

  15. Huang MM, Leo C, Wei S, Stanley RE, Doberstein S, Lin H (2008) IL-34, in synergy with RANK ligand, promotes osteoclast development through the CSF-1 receptor. Blood 112:Abstract 5392

  16. Kutukculer N, Caglayan S, Aydogdu F (1998) Study of pro-inflammatory (TNF-alpha, IL-1alpha, IL-6) and T-cell-derived (IL-2, IL-4) cytokines in plasma and synovial fluid of patients with juvenile chronic arthritis: correlations with clinical and laboratory parameters. Clin Rheumatol 17:288–292

    Article  PubMed  CAS  Google Scholar 

  17. Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S, Saito S, Inoue K, Kamatani N, Gillespie MT, Martin TJ, Suda T (1999) IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 103:1345–1352

    Article  PubMed  CAS  Google Scholar 

  18. Yao GQ, Sun BH, Insogna KL, Weir EC (2000) Nuclear factor-kappaB p50 is required for tumor necrosis factor-alpha-induced colony-stimulating factor-1 gene expression in osteoblasts. Endocrinology 141:2914–2922

    Article  PubMed  CAS  Google Scholar 

  19. Kamthong PJ, Wu M (2001) Inhibitor of nuclear factor-kappaB induction by cAMP antagonizes interleukin-1-induced human macrophage-colony-stimulating-factor expression. Biochem J 356(Pt 2):525–530

    Article  PubMed  CAS  Google Scholar 

  20. Seo SW, Lee D, Minematsu H, Kim AD, Shin M, Cho SK, Kim DW, Yang J, Lee FY (2010) Targeting extracellular signal-regulated kinase (ERK) signaling has therapeutic implications for inflammatory osteolysis. Bone 46:695–702

    Article  PubMed  CAS  Google Scholar 

  21. Yongchaitrakul T, Lertsirirangson K, Pavasant P (2006) Human periodontal ligament cells secrete macrophage colony-stimulating factor in response to tumor necrosis factor-alpha in vitro. J Periodontol 77:955–962

    Article  PubMed  CAS  Google Scholar 

  22. Romashkova JA, Makarov SS (1999) NF-kappaB is a target of AKT in anti-apoptotic PDGF signaling. Nature 401:86–90

    Article  PubMed  CAS  Google Scholar 

  23. Repici M, Mare L, Colombo A, Ploia C, Sclip A, Bonny C, Nicod P, Salmona M, Borsello T (2009) c-Jun N-terminal kinase binding domain-dependent phosphorylation of mitogen-activated protein kinase kinase 4 and mitogen-activated protein kinase kinase 7 and balancing cross-talk between c-Jun N-terminal kinase and extracellular signal-regulated kinase pathways in cortical neurons. Neuroscience 159:94–103

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Eda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eda, H., Shimada, H., Beidler, D.R. et al. Proinflammatory cytokines, IL-1β and TNF-α, induce expression of interleukin-34 mRNA via JNK- and p44/42 MAPK-NF-κB pathway but not p38 pathway in osteoblasts. Rheumatol Int 31, 1525–1530 (2011). https://doi.org/10.1007/s00296-010-1688-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-010-1688-7

Keywords

Navigation