Skip to main content
Log in

Possible benefits of strontium ranelate in complicated long bone fractures

  • Original Article
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Osteoporosis drugs are prescribed to prevent fragility fractures, which is the principal aim of the management of osteoporosis. However, if fracture does occur, then it is also important to promote a fast and uneventful healing process. Despite this, little is known about the effect of osteoporosis drugs on bone healing in humans. Strontium ranelate is an osteoporosis agent that increases bone formation and reduces bone resorption and may therefore be beneficial in fracture healing. We report four cases of fracture non-union for up to 20 months. Treatment with strontium ranelate (2 g/day) for between 6 weeks and 6 months appeared to contribute to bone consolidation in the four cases. Animal studies support beneficial effects of strontium ranelate on bone healing via improvement of bone material properties and microarchitecture in the vicinity of the fracture. The clinical cases described herein provide new information on these effects, in the absence of randomized controlled studies on the clinical efficacy of pharmacological treatments in osteoporosis in fracture repair. Further studies are necessary. Fracture healing is an important topic in orthopedic research and is also a concern for patients with postmenopausal osteoporosis. Evidence from case reports and animal studies suggests that strontium ranelate improves bone microarchitecture and accelerates fracture healing. A positive effect of osteoporosis treatments on bone healing is an interesting possibility and merits further clinical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cooper C (1997) The crippling consequences of fractures and their impact on quality of life. Am J Med 103:12S–17S

    Article  PubMed  CAS  Google Scholar 

  2. Sambrook P, Cooper C (2006) Osteoporosis. Lancet 367:2010–2018

    Article  PubMed  CAS  Google Scholar 

  3. Nikolaou VS, Efstathopoulos N, Kontakis G et al (2009) The influence of osteoporosis in femoral fracture healing time. Injury 40:663–668

    Article  PubMed  Google Scholar 

  4. Mashiba T, Hirano T, Turner CH et al (2000) Suppressed bone turnover by bisphosphonates increases microdamage accumulation and reduces some biomechanical properties in dog rib. J Bone Miner Res 15:613–620

    Article  PubMed  CAS  Google Scholar 

  5. Lehman RA Jr, Dmitriev AE, Cardoso MJ et al (2010) Effect of teriparatide [rhPTH (1, 34)] and calcitonin on intertransverse process fusion in a rabbit model. Spine 35:146–152

    Article  PubMed  Google Scholar 

  6. Marie PJ, Ammann P, Boivin G et al (2001) Mechanisms of action and therapeutic potential of strontium in bone. Calcif Tissue Int 69:121–129

    Article  PubMed  CAS  Google Scholar 

  7. Aspenberg P (2005) Drugs and fracture repair. Acta Orthop 76:741–748

    Article  PubMed  Google Scholar 

  8. Brennan TC, Rybchyn MS, Green W et al (2009) Osteoblasts play key roles in the mechanisms of action of strontium ranelate. Br J Pharmacol 157:1291–1300

    Article  PubMed  CAS  Google Scholar 

  9. Fromigué O, Haÿ E, Barbara A et al (2009) Calcium sensing receptor-dependent and receptor-independent activation of osteoblast replication and survival by strontium ranelate. J Cell Mol Med 13:2189–2199

    Article  PubMed  Google Scholar 

  10. Baron R, Tsouderos Y (2002) In vitro effects of S12911–2 on osteoclast function and bone marrow macrophage differenciation. Eur J Pharmacol 450:11–17

    Article  PubMed  CAS  Google Scholar 

  11. Bonnelye E, Chabadel A, Saltel F et al (2008) Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone 42:129–138

    Article  PubMed  CAS  Google Scholar 

  12. Hurtel-Lemaire AS, Mentaverri R, Caudrillier A et al (2009) The calcium-sensing receptor is involved in strontium ranelate-induced osteoclast apoptosis. New insights into the associated signaling pathways. J Biol Chem 284:575–584

    Article  PubMed  CAS  Google Scholar 

  13. Mentaverri R, Yano S, Chattopadhyay N et al (2006) The calcium sensing receptor is directly involved in both osteoclast differentiation and apoptosis. FASEB J 20:2562–2564

    Article  PubMed  CAS  Google Scholar 

  14. Takahashi N, Sasaki T, Tsouderos Y et al (2003) S12911–2 inhibits osteoclastic bone resorption in vitro. J Bone Miner Res 18:1082–1087

    Article  PubMed  CAS  Google Scholar 

  15. Ammann P, Badoud I, Barraud S et al (2007) Strontium ranelate treatment improves trabecular and cortical intrinsic bone tissue quality, a determinant of bone strength. J Bone Miner Res 22:1419–1425

    Article  PubMed  CAS  Google Scholar 

  16. Bain SD, Jerome C, Shen V et al (2009) Strontium ranelate improves bone strength in ovariectomized rat by positively influencing bone resistance determinants. Osteoporos Int 20:1417–1428

    Article  PubMed  CAS  Google Scholar 

  17. Li YF, Luo E, Feng G et al (2010) Systemic treatment with strontium ranelate promotes tibial fracture healing in ovariectomized rats. Osteoporos Int In press

  18. Arlot ME, Jiang Y, Genant HK et al (2008) Histomorphometric and microCT analysis of bone biopsies from postmenopausal osteoporotic women treated with strontium ranelate. J Bone Miner Res 23:215–222

    Article  PubMed  CAS  Google Scholar 

  19. Rizzoli R, Laroche M, Krieg MA et al (2010) Strontium ranelate and alendronate have differing effects on distal tibia bone microstructure in women with osteoporosis. Rheumatol Int In press

  20. Habermann B, Kafchitsas K, Olender G et al (2010) Strontium ranelate enhances callus strength more than PTH 1–34 in an osteoporotic rat model of fracture healing. Calcif Tissue Int 86:82–89

    Article  PubMed  CAS  Google Scholar 

  21. Maimoun L, Brennan TC, Badoud I et al (2010) Strontium ranelate improves implant osseointegration. Bone 46:1436–1441

    Article  PubMed  CAS  Google Scholar 

  22. Li Y, Feng G, Gao Y et al (2010) Strontium ranelate treatment enhances hydroxyapatite-coated titanium screws fixation in osteoporotic rats. J Orthop Res 28:578–582

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

Duarte Nuno Alegre has received honoraria, research grants, or both, from Servier. The authors have no other relevant affiliations or financial involvement with any organization or entity in conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duarte Nuno Alegre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alegre, D.N., Ribeiro, C., Sousa, C. et al. Possible benefits of strontium ranelate in complicated long bone fractures. Rheumatol Int 32, 439–443 (2012). https://doi.org/10.1007/s00296-010-1687-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-010-1687-8

Keywords

Navigation