Skip to main content
Log in

The effects of bone turnover rate on subchondral trabecular bone structure and cartilage damage in the osteoarthritis rat model

  • Original Article
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

The effects of bone turnover rate on subchondral trabecular changes and cartilage destruction were evaluated in an iodoacetate-induced osteoarthritis rat model. Thirty female rats were randomly divided into three groups as the ovariectomized group, the no-treatment group and the bisphosphonate medication group. Arthritis was induced by a single intra-articular iodoacetate injection into the right tibiofemoral joint. Eight weeks after this injection, tibiofemoral joints on both sides were scanned with a micro-CT. Subchondral trabecular indices were measured on both sides of the tibial lateral condyle epiphysis. In the ovariectomized group, the percentage of bone volume, trabecular thickness and trabecular bone pattern factor of the arthritic sides were lower than those of the control sides, while trabecular separation and structure model index of the arthritic sides were higher than those of the control sides (p < 0.05). In the no-treatment group, only trabecular thickness of the arthritic sides was lower than in the control sides (p < 0.05). In the bisphosphonate medication group, trabecular indices were no different between the arthritic and control sides. Articular cartilage destruction and severity of arthritis increased significantly in the order: ovariectomized group < no-treatment group < bisphosphonate medication group (p < 0.05). After osteoarthritis development, severities of subchondral trabecular changes appeared to be strongly affected by bone turnover rate. Furthermore, a correlation was found between cartilage destruction severity and subchondral trabecular change in the intra-articular iodoacetate-injected osteoarthritis rat model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Calvo E, Palacios I, Delgado E, Sanchez-Pernaute O, Largo R, Egido J et al (2004) Histopathological correlation of cartilage swelling detected by magnetic resonance imaging in early experimental osteoarthritis. Osteoarthr Cartil 12:878–886

    Article  CAS  PubMed  Google Scholar 

  2. Chappard C, Peyrin F, Bonnassie A, Lemineur G, Brunet-Imbault B, Lespessailles E et al (2006) Subchondral bone micro-architectural alterations in osteoarthritis: a synchrotron micro-computed tomography study. Osteoarthr Cartil 14:215–223

    Article  CAS  PubMed  Google Scholar 

  3. Pastoureau P, Leduc S, Chomel A, De Ceuninck F (2003) Quantitative assessment of articular cartilage and subchondral bone histology in the menisectomized guinea pig model of osteoarthritis. Osteoarthr Cartil 11:412–423

    Article  CAS  PubMed  Google Scholar 

  4. Kamibayashi L, Wyss UP, Cooke TD, Zee B (1995) Trabecular microstructure in the medial condyle of the proximal tibia of patients with knee osteoarthritis. Bone 17:27–35

    Article  CAS  PubMed  Google Scholar 

  5. Patel V, Issever AS, Burghardt A, Laib A, Ries M, Majumdar (2003) MicroCT evaluation of normal and osteoarthritic bone structure in human knee specimens. J Orthop Res 21:6–13

    Article  PubMed  Google Scholar 

  6. Botter SM, van Osch GJ, Waarsing JH, Day JS, Verhaar JA, Pols HA et al (2006) Quantification of subchondral bone changes in a murine osteoarthritis model using micro-CT. Biorheology 43:379–388

    CAS  PubMed  Google Scholar 

  7. Layton MW, Goldstein SA, Goulet RW, Feldkamp LA, Kubinski DJ, Bole GG (1988) Examination of subchondral bone architecture in experimental osteoarthritis by microscopic computed axial tomography. Arthritis Rheum 31:1400–1405

    Article  CAS  PubMed  Google Scholar 

  8. Behets C, Williams JM, Chappard D, Devogelaer JP, Manicourt DH (2004) Effects of calcitonin on subchondral trabecular bone changes and on osteoarthritic cartilage lesions after acute anterior cruciate ligament deficiency. J Bone Miner Res 19:1821–1826

    Article  CAS  PubMed  Google Scholar 

  9. El Hajjaji H, Williams JM, Devogelaer JP, Lenz ME, Thonar EJ, Manicourt DH (2004) Treatment with calcitonin prevents the net loss of collagen, hyaluronan and proteoglycan aggregates from cartilage in the early stages of canine experimental osteoarthritis. Osteoarthr Cartil 12:904–911

    Article  PubMed  Google Scholar 

  10. Høegh-Andersen P, Tankó LB, Andersen TL, Lundberg CV, Mo JA, Heegaard AM et al (2004) Ovariectomized rats as a model of postmenopausal osteoarthritis: validation and application. Arthritis Res Ther 6:R169–R180

    Article  PubMed  Google Scholar 

  11. Calvo E, Castañeda S, Largo R, Fernández-Valle ME, Rodríguez-Salvanés F, Herrero-Beaumont G (2007) Osteoporosis increases the severity of cartilage damage in an experimental model of osteoarthritis in rabbits. Osteoarthr Cartil 15:69–77

    Article  CAS  PubMed  Google Scholar 

  12. Lane NE, Kumer JL, Majumdar S, Khan M, Lotz J, Stevens RE et al (2002) The effects of synthetic conjugated estrogens, a (cenestin) on trabecular bone structure and strength in the ovariectomized rat model. Osteoporos Int 13:816–823

    Article  CAS  PubMed  Google Scholar 

  13. Rodan GA, Fleisch HA (1996) Bisphosphonates: mechanisms of action. J Clin Invest 97:2692–2696

    Article  CAS  PubMed  Google Scholar 

  14. Lin JH (1996) Bisphosphonates: a review of their pharmacokinetic properties. Bone 18:75–85

    Article  CAS  PubMed  Google Scholar 

  15. Myers SL, Brandt KD, Burr DB, O’Connor BL, Albrecht M (1999) Effects of a bisphosphonate on bone histomorphometry and dynamics in the canine cruciate deficiency model of osteoarthritis. J Rheumatol 26:2645–2653

    CAS  PubMed  Google Scholar 

  16. Buckland-Wright JC, Messent EA, Bingham CO 3rd, Ward RJ, Tonkin C (2007) A 2-year longitudinal radiographic study examining the effect of a bisphosphonate (risedronate) upon subchondral bone loss in osteoarthritic knee patients. Rheumatology (Oxford) 46:257–264

    Article  CAS  Google Scholar 

  17. Ameye LG, Young MF (2006) Animal models of osteoarthritis: lessons learned while seeking the “Holy Grail”. Curr Opin Rheumatol 18:537–547

    Article  PubMed  Google Scholar 

  18. Guingamp C, Gegout-Pottie P, Philippe L, Terlain B, Netter P, Gillet P (1997) Mono-iodoacetate-induced experimental osteoarthritis: a dose–response study of loss of mobility, morphology, and biochemistry. Arthritis Rheum 40:1670–1679

    Article  CAS  PubMed  Google Scholar 

  19. Janusz MJ, Hookfin EB, Heitmeyer SA, Woessner JF, Freemont AJ, Hoyland JA, Brown KK et al (2001) Moderation of iodoacetate-induced experimental osteoarthritis in rats by matrix metalloproteinase inhibitors. Osteoarthr Cartil 9:751–760

    Article  CAS  PubMed  Google Scholar 

  20. Guzman RE, Evans MG, Bove S, Morenko B, Kilgore K (2003) Mono-iodoacetate-induced histologic changes in subchondral bone and articular cartilage of rat femorotibial joints: an animal model of osteoarthritis. Toxicol Pathol 31:619–624

    CAS  PubMed  Google Scholar 

  21. Kobayashi K, Imaizumi R, Sumichika H, Tanaka H, Goda M, Fukunari A et al (2003) Sodium iodoacetate-induced experimental osteoarthritis and associated pain model in rats. J Vet Med Sci 65:1195–1199

    Article  PubMed  Google Scholar 

  22. Waynforth HB, Flecknell PA (1992) Experimental and surgical technique in the rat. Elsevier, Suffolk, pp 32–33, 276–278

  23. Saal A, Gaertner J, Kuehling M, Swoboda B, Klug S (2005) Macroscopic and radiological grading of osteoarthritis correlates inadequately with cartilage height and histologically demonstrable damage to cartilage structure. Rheumatol Int 25:161–168

    Article  PubMed  Google Scholar 

  24. Hayami T, Pickarski M, Wesolowski GA, McLane J, Bone A, Destefano J et al (2004) The role of subchondral bone remodeling in osteoarthritis: reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model. Arthritis Rheum 50:1193–1206

    Article  CAS  PubMed  Google Scholar 

  25. Stewart A, Black A, Robins SP, Reid DM (1999) Bone density and bone turnover in patients with osteoarthritis and osteoporosis. J Rheumatol 26:622–626

    CAS  PubMed  Google Scholar 

  26. Lavigne P, Benderdour M, Lajeunesse D, Reboul P, Shi Q, Pelletier JP et al (2005) Subchondral and trabecular bone metabolism regulation in canine experimental knee osteoarthritis. Osteoarthr Cartil 13:310–317

    Article  CAS  PubMed  Google Scholar 

  27. Day JS, Ding M, Linden JC, Hvid I, Sumner DR, Weinans (2001) A decreased subchondral trabecular bone tissue elastic modulus is associated with pre-arthritic cartilage damage. J Orthop Res 19:914–918

    Article  CAS  PubMed  Google Scholar 

  28. Boyd SK, Müller R, Zernicke (2002) Mechanical and architectural bone adaptation in early stage experimental osteoarthritis. J Bone Miner Res 17:687–694

    Article  PubMed  Google Scholar 

  29. McNamara LM, Ederveen AG, Lyons CG, Price C, Schaffler MB, Weinans H et al (2006) Strength of cancellous bone trabecular tissue from normal, ovariectomized and drug-treated rats over the course of ageing. Bone 39:392–400

    Article  CAS  PubMed  Google Scholar 

  30. Li B, Aspden RM (1997) Mechanical and material properties of the subchondral bone plate from the femoral head of patients with osteoarthritis or osteoporosis. Ann Rheum Dis 56:247–254

    Article  CAS  PubMed  Google Scholar 

  31. Ostergaard K, Andersen CB, Petersen J, Bendtzen K, Salter DM (1999) Validity of histopathological grading of articular cartilage from osteoarthritic knee joints. Ann Rheum Dis 58:208–213

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heung Sik Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koh, Y.H., Hong, S.H., Kang, H.S. et al. The effects of bone turnover rate on subchondral trabecular bone structure and cartilage damage in the osteoarthritis rat model. Rheumatol Int 30, 1165–1171 (2010). https://doi.org/10.1007/s00296-009-1118-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-009-1118-x

Keywords

Navigation