Skip to main content

Advertisement

Log in

Lipoprotein profile in limited systemic sclerosis

  • Original Article
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

The objective of this study was to determine the lipoprotein profile of limited cutaneous systemic sclerosis (LcSSc). Fasting lipids were determined in 24 female patients and 24 healthy age-matched and sex-matched controls. Exclusion criteria were conditions that induce an altered lipid profile. Lipoprotein levels of risk were determined in accordance with the National Cholesterol Education Program (NCEP). Significantly lower levels of high-density lipoprotein (HDL) cholesterol (47.6±12.4 mg dL−1 vs. 58.2±12.3 mg dL−1; P=0.003) and total cholesterol (197.0±40.7 mg dL−1 vs. 222.0±34.0 mg dL−1; P=0.02) were observed in LcSSc patients than in controls. The presence of anti-centromere antibodies (ACA) was also associated with lower HDL levels (45.0±12.1 mg dL−1) compared to ACA-negative patients and controls (50.2±12.6 and 58.2±12.3 mg dL−1, respectively, P=0.01). The only clinical variable associated with low HDL levels was pulmonary hypertension (PH) (33.6±2.3 mg dL−1 vs. 49.6±11.9 mg dL−1, P=0.01). No significant correlation was observed among HDL levels and ESR (r=−0.313; P=0.14), CRP (r=−0.296; P=0.16), or BMI (r=−0.263; P=0.21). Remarkably, a higher percentage of risk HDL levels was identified in LcSSc patients (41.6%) than in healthy controls (8.3%) (P=0.02). Our data suggest that LcSSc patients, particularly those who are ACA positive, have an adverse lipid profile characterized by low HDL levels, a known independent risk for CAD in women. The relevance of this finding for the development of atherosclerosis in this disease must be confirmed by epidemiological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ross R (1999) Atherosclerosis–an inflammatory disease. N Engl J Med 340:115–126

    Article  CAS  PubMed  Google Scholar 

  2. Borba EF, Bonfá E (1997) Dyslipoproteinemias in systemic lupus erythematosus: influence of disease, activity, and anticardiolipin antibodies. Lupus 6:533–539

    Google Scholar 

  3. Borba EF, Bonfá E, Vinagre CGC, Ramires JAF, Maranhão RC (2000) Chylomicron metabolism is markedly altered in systemic lupus erythematosus. Arthritis Rheum 43:1033–1040

    Google Scholar 

  4. Bruce IN, Gladman DD, Urowitz MB (2000) Premature atherosclerosis in systemic lupus erythematosus. Rheum Dis Clin North Am 26(2):257–278

    Google Scholar 

  5. Rantapää-Dahlqvist S, Wallberg-Jonsson S, Dahlen G (1991) Lipoprotein(a), lipids and lipoproteins in patients with rheumatoid arthritis. Ann Rheum Dis 50:366–368

    PubMed  Google Scholar 

  6. Lorber M, Aviram M, Linn S, Scharf Y, Brook JG (1985) Hypocholesterolemia and abnormal high-density lipoprotein in rheumatoid arthritis. Br J Rheumatol 24:250–255

    CAS  PubMed  Google Scholar 

  7. Park YB, Lee SK, Lee WK et al (1999) Lipid profiles in untreated patients with rheumatoid arthritis. J Rheumatol 26:1701–1704

    CAS  PubMed  Google Scholar 

  8. Carpentier H, Maricq HR (1990) Microvasculature in systemic sclerosis. Clin Exp Rheumatol 16:75–92

    Google Scholar 

  9. Kahaleh MB (1991) Endothelin, an endothelial-dependent vasoconstrictor in scleroderma: enhanced production and profibrotic action. Arthritis Rheum 34:978–983

    Google Scholar 

  10. Yamane K, Miyauchi T, Suzuki N et al (1992) Significance of plasma endothelin-1 levels in patients with SSc. J Rheumatol 19:1566–1571

    CAS  PubMed  Google Scholar 

  11. Vancheeswaran R, Magoulas T, Efrat G, Penny RM, Black CM (1994) Circulating endothelin-1 levels in systemic sclerosis (SSc) subsets: a marker of fibrosis or vascular dysfunction? J Rheumatol 21:1838–1844

    CAS  PubMed  Google Scholar 

  12. Kahaleh MB (1990) Vascular disease in scleroderma. Rheum Dis Clin North Am 16:53–73

    Google Scholar 

  13. Korn JH (1991) Immunological aspects of scleroderma. Curr Opin Rheumatol 3:947–952

    Google Scholar 

  14. Murrel DF (1993) A radical proposal for the pathogenesis of scleroderma. J Am Acad Dermatol 28:78–85

    Google Scholar 

  15. Youssef P, Brama T, Englert H, Bertouch J (1995) Limited scleroderma is associated with increased prevalence of macrovascular disease. J Rheumatol 22:469–472

    Google Scholar 

  16. Veale DJ, Collidge TA, Belch JJF (1995) Increased prevalence of symptomatic macrovascular disease in systemic sclerosis. Ann Rheum Dis 54:853–855

    Google Scholar 

  17. Stafford L, Englert H, Gover J, Bertouch J (1998) Distribution of macrovascular disease in scleroderma. Ann Rheum Dis 57:476–479

    Google Scholar 

  18. Ho M, Veale D, Eastmond C, Nuki G, Belch J (2000) Macrovascular disease and systemic sclerosis. Ann Rheum Dis 59:39–43

    Google Scholar 

  19. Wan MC, Moore T, Hollis S, Herrick AL (2001) Ankle brachial pressure index in systemic sclerosis: influence of disease subtype and anticentromere antibody. Rheumatology 40:1102–1105

    Google Scholar 

  20. Dick EA, Aviv R, Francis I et al (2001) Catheter angiography and angioplasty in patients with scleroderma. Br J Radiol 74:1091–1096

    Google Scholar 

  21. LeRoy EC, Black C, Fleischmajer R et al (1988) Scleroderma (systemic sclerosis): classification, subsets and pathogenesis. J Rheumatol 15:202–205

    CAS  PubMed  Google Scholar 

  22. Siedel J, Hägele EO, Ziegenhorn J, Wahlefeld AW (1983) Reagent for the enzymatic determination of serum total cholesterol with improved lipolytic efficiency. Clin Chem 29:1075–1080

    Google Scholar 

  23. Fossati P, Prencipe L (1982) Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clin Chem 28:2077–2080

    CAS  PubMed  Google Scholar 

  24. Warnick GR, Cheung MC, Albers JJ (1979) Comparison of current methods for high-density lipoprotein cholesterol quantification. Clin Chem 25:596–604

    Google Scholar 

  25. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502

    CAS  PubMed  Google Scholar 

  26. Expert Panel on detection, evaluation, and treatment of high blood cholesterol in adults (2001) Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment high blood cholesterol in adults (Adult Treatment Panel III). JAMA 285:2486–2497

    PubMed  Google Scholar 

  27. Kannel WB, Hjortland MC, McNamara PM, Gordon T (1976) Menopause and risk of cardiovascular disease. The Framingham study. Ann Intern Med 85:447–452

    CAS  PubMed  Google Scholar 

  28. Denke MA, Sempos CT, Grundy SM (1994) Excess body weight. An under-recognized contributor to dyslipidemia in white American women. Arch Intern Med 154:401–410

    Google Scholar 

  29. Brown WV (1994) Lipoprotein disorders in diabetes mellitus. Med Clin North Am 78:143–161

    Google Scholar 

  30. Seidel D (1987) Lipoproteins in liver disease. J Clin Chem Clin Biochem 25:541–551

    Google Scholar 

  31. Thompson GR, Soutar AK, Spengel FA, Jadhav A, Gavigan SJP, Myant NB (1981) Defects of receptor-mediated low density lipoprotein catabolism in homozygous familial hypercholesterolemia and hypothyroidism. Proc Natl Acad Sci USA 78:2591–2595

    Google Scholar 

  32. Henkin Y, Como JA, Oberman A (1992) Secondary dyslipidemia. Inadvertent effects of drugs in clinical practice. JAMA 267:961–968

    Google Scholar 

  33. Appel GB, Blum CB, Chien S, Kunis CL, Appel AS (1985) The hyperlipidemia of the nephrotic syndrome. Relation to plasma albumin concentration, oncotic pressure and viscosity. N Engl J Med 312:1544–1548

    Google Scholar 

  34. Attman PO, Alaupovic P (1991) Lipid and apolipoprotein profiles of uremic dyslipoproteinemia. Relation to renal function and dialysis. Nephron 57:401–410

    Google Scholar 

  35. Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR (1977) High density lipoprotein as a protective factor against coronary heart disease. The Framingham study. Am J Med 62:707–714

    Article  CAS  PubMed  Google Scholar 

  36. Castelli WP, Garrison RJ, Wilson PW, Abbot RD, Kalousdian S, Kannel WB (1986) Incidence of coronary heart disease and lipoprotein cholesterol levels. The Framingham study. JAMA 256:2835–2838

    Google Scholar 

  37. Jacobs DR Jr, Mebane IL, Bangdiwala SI, Criqui MH, Tyroler HA (1990) High density lipoprotein cholesterol as a predictor of cardiovascular disease mortality in men and women: the Follow-up Study of the Lipid Research Clinics’ Prevalence Study. Am J Epidemiol 131:32–47

    Google Scholar 

  38. Bruckdorfer KR, Hillary JB, Bunce T, Vancheeswaran R, Black CM (1995) Increased susceptibility to oxidation of low-density lipoproteins isolated from patients with systemic sclerosis. Arthritis Rheum 38:1060–1067

    Google Scholar 

  39. Parthasarathy S, Barnett J, Fong LG (1990) High density lipoprotein inhibits the oxidative modification of low-density lipoprotein. Biochim Biophys Acta 1044:275–283

    Article  CAS  PubMed  Google Scholar 

  40. Van Lenten BJ, Hama SY, de Beer FC et al (1995) Anti-inflammatory HDL becomes pro-inflammatory during the acute phase response. J Clin Invest 96:2758–2767

    Google Scholar 

  41. Simonini G, Cerinic MM, Generini S et al (1999) Oxidative stress in systemic sclerosis. Mol Cell Biochem 196:85–91

    Google Scholar 

  42. Berliner JA, Territo MC, Sevanian A et al (1990) Minimally modified low density lipoprotein induces monocyte chemotactic protein-1 in human endothelial cells and smooth muscle cells. J Clin Invest 85:5134–5138

    Google Scholar 

  43. Shih PT, Elices MJ, Fang ZT et al (1999) Minimally modified low-density lipoprotein induces monocyte adhesion to endothelial connecting segment-1 by activating beta1 integrin. J Clin Invest 103:613–625

    Google Scholar 

  44. Bhadra S, Arshad MA, Rymaszewski Z, Norman E, Wherley R, Subbiah MT (1991) Oxidation of cholesterol moiety of low density lipoprotein in the presence of human endothelial cells or Cu+2 ions: identification of major products and their effects. Biochem Biophys Res Commun 17:431–440

    Google Scholar 

  45. Herrick AL, Illingworth KJ, Hollis S, Gomez-Zumaquero JM, Tinahones FJ (2001) Antibodies against oxidized low-density lipoproteins in systemic sclerosis. Rheumatology 40:401–405

    Google Scholar 

  46. Lopes-Virella M, Binzafar N, Rackey S, Takei A, La Via M, Virella G (1997) The uptake of LDL-IC by human macrophages: predominant involvement of the Fc gamma RI receptor. Atherosclerosis 135:161–170

    Google Scholar 

  47. Borba EF, Bonfá E (2001) Longterm beneficial effect of chloroquine diphosphate on lipoprotein profile in lupus patients with and without steroid therapy. J Rheumatol 28:780–785

    Google Scholar 

  48. Munro R, Morrison E, McDonald AG, Hunter JA, Madhok R, Capell HA (1997) Effect of disease modifying agents on the lipid profiles of patients with rheumatoid arthritis. Ann Rheum Dis 56:374–377

    Google Scholar 

Download references

Acknowledgment

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) grant 304756/2003-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo F. Borba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borba, E.F., Borges, C.T.L. & Bonfá, E. Lipoprotein profile in limited systemic sclerosis. Rheumatol Int 25, 379–383 (2005). https://doi.org/10.1007/s00296-004-0580-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-004-0580-8

Keywords

Navigation