Skip to main content

Advertisement

Log in

Disease-associated increased HIF-1, αvβ3 integrin, and Flt-1 do not suffice to compensate the damage-inducing loss of blood vessels in inflammatory myopathies

  • Original Article
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Objective

To analyze the microvascular network in skeletal muscle biopsies from patients with dermatomyositis (DM) and systemic sclerosis (SSc) compared to polymyositis (PM) and systemic lupus erythematosus (SLE), and non-inflammatory myopathies, and to clarify whether reparative angiogenesis-related factors are expressed in parallel to blood vessel damage.

Methods

Immunohistochemical staining of muscle biopsies (10 DM, 10 SSc, 10 PM, 10 SLE, and 10 non-inflammatory myopathies) with antibodies against von Willebrand factor (vWF), hypoxia-inducible factor-1β (HIF-1β), β3 integrin subunit, and vascular endothelial growth factor receptor-1 (VEGFR-1). The TechMate staining robot and biotin-streptavidin protocol were used.

Results

DM and SSc muscles were characterized by endothelial damage and reduction of blood vessel network. Expression of angiogenesis-related factors (HIF-1β, β3, VEGFR-1) was also found in the same biopsies. In contrast, in PM and SLE muscles, vascular networks were apparently not affected and angiogenic stimuli were less expressed if at all.

Conclusions

This work demonstrates that in inflamed muscles hypoxia/ischemia induces increased expression of angiogenic factors, yet their impact is insufficient to repair disease-associated reduction of the capillary network. This leads to questions considering the usefulness of angiogenic factors in the treatment of ischemic inflammatory myopathies in DM and SSc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–F.
Fig. 2A–F.

Similar content being viewed by others

References

  1. Emslie-Smith AM, Engel AG (1990) Microvascular changes in early and advanced dermatomyositis:a quantitative study. Ann Neurol 27:343–356

    Google Scholar 

  2. Banker BQ (1975) Dermatomyositis of childhood, ultrastructural alterations of muscle and intramuscular blood vessels. J Neuropathol Exp Neurol 34:46–75

    CAS  PubMed  Google Scholar 

  3. Vlodavsky EA, Ludatscher RM, Sabo E, Kerner H (1999) Evaluation of muscle capillary basement membrane in inflammatory myopathy. A morphometric ultrastructural study. Virchows Arch 435:58–61

    Article  CAS  PubMed  Google Scholar 

  4. Casademont J, Grau JM, Estruch R, Pedro-Botet JC, Urbano-Marquez A (1990) Relationship between capillary and muscle damage in dermatomyositis. Int J Dermatol 29:117–120

    CAS  PubMed  Google Scholar 

  5. Casademont J, Grau JM, Masanes F, Herrero C, Urbano-Marquez A (1993) Analysis of the outcome of idiopathic inflammatory myopathies with particular emphasis on muscle capillary damage. Scand J Rheumatol 22:292–298

    CAS  PubMed  Google Scholar 

  6. Estruch R, Grau JM, Fernandez-Sola J, Casademont J, Monforte R, Urbano-Marquez A (1992) Microvascular changes in skeletal muscle in idiopathic inflammatory myopathy. Hum Pathol 23:888–895

    CAS  PubMed  Google Scholar 

  7. Crowson AN, Magro CM (1996) The role of microvascular injury in the pathogenesis of cutaneous lesions of dermatomyositis. Hum Pathol 27:15–19

    CAS  PubMed  Google Scholar 

  8. Leteurtre E, Hachulla E, Janin A, Hatron PY, Brouillard M, Devulder B (1994) Vascular manifestations of dermatomyositis and polymyositis. Clinical, capillaroscopic and histological aspects. Rev Med Intern 15:800–807

    CAS  Google Scholar 

  9. Scheja A, Elborgh R, Wildt M (1999) Decreased capillary density in juvenile dermatomyositis and in mixed connective tissue disease. J Rheumatol 26:1377–1381

    CAS  PubMed  Google Scholar 

  10. Englund P, Nennesmo I, Klareskog L, Lundberg IE (2002) Interleukin-1α expression in capillaries and major histocompatibility complex class I expression in type II muscle fibers from polymyositis and dermatomyositis. Atrhritis Rheum 46:1044–1055

    Article  CAS  Google Scholar 

  11. Dalakas MC (1995) Immunopathogenesis of inflammatory myopathies. Ann Neurol 37[S1]:S74-S86

  12. Cid M-C, Grau J-M, Casademont J, et al (1996) Leucocyte/endothelial cell adhesion receptors in muscle biopsies from patients with idiopathic inflammatory myopathies (IIM). Clin Exp Immunol 104:467–473

    CAS  PubMed  Google Scholar 

  13. Rasaratnam I, Ryan PFJ (1997) Systemic sclerosis and the inflammatory myopathies. Med J Aust 166:322–327

    CAS  PubMed  Google Scholar 

  14. Nagaraju K, Raben N, Loeffler L, et al (2000) Conditional up-regulation of MHC class I in skeletal muscle leads to self-sustaining autoimmune myositis and myositis-specific autoantibodies. Proc Natl Acad Sci USA 97:9209–9214

    Article  CAS  PubMed  Google Scholar 

  15. Schmidt WA, Wetzel W, Friedlander R, et al (2000) Clinical and serological aspects of patients with anti-Jo-1 antibodies—an evolving spectrum of disease manifestations. Clin Rheumatol 19:371–377

    Article  CAS  PubMed  Google Scholar 

  16. Nagaraju K (2001) Immunological capabilities of skeletal muscle cells. Acta Physiol Scand 171:215–223

    Article  CAS  PubMed  Google Scholar 

  17. Majewski S, Skopinska-Rózewska E, Jablonska S, et al (1985) Modulatory effects of sera from scleroderma patients on lymphocyte-induced angiogenesis. Arthritis Rheum 28:1133–1139

    CAS  PubMed  Google Scholar 

  18. Ribatti D, Cantatore FB, Vacca A, et al (1998) Systemic sclerosis stimulates angiogenesis in the chick embryo chorioallantoic membrane. Clin Rheumatol 17:115–120

    CAS  PubMed  Google Scholar 

  19. Hohlfeld R, Engel AG, Goebels N, Behrens L (1997) Cellular immune mechanisms in inflammatory myopathies. Curr Opin Rheumatol 9:520–526

    CAS  PubMed  Google Scholar 

  20. Bohan A, Peter JB (1975) Polymyositis and dermatomyositis. I. New Engl J Med 292:344–347

    CAS  PubMed  Google Scholar 

  21. Bohan A, Peter JB (1975) Polymyositis and dermatomyositis. II. New Engl J Med 292:403–407

    CAS  PubMed  Google Scholar 

  22. Čeponis A, Konttinen YT, Mackevicius Z, et al (1996) Aberrant vascularity and von Willebrand Factor distribution in inflamed synovial membrane. J Rheumatol 23:1880–1886

    PubMed  Google Scholar 

  23. Minchenko A, Bauer T, Salceda S, Caro J (1994) Hypoxic stimulation of vascular endothelial growth factor expression in vitro and in vivo. Lab Invest 71:374–379

    CAS  PubMed  Google Scholar 

  24. Shweiki D, Itin A, Soffer D, Keshet E (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359:843–845

    PubMed  Google Scholar 

  25. Forsythe JA, Jiang BH, Iyer NV, et al (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16:4604–4613

    CAS  PubMed  Google Scholar 

  26. Gassmann M, Wenger RH (1997) HIF-1, a mediator of the molecular response to hypoxia. News Physiol Sci 12:214–218

    CAS  Google Scholar 

  27. Gustafsson T, Puntschart A, Kaijser L, Jansson E, Sundberg CJ (1999) Excercise-induced expression of angiogenesis-related transcription and growth factors in human skeletal muscle. Am J Physiol 276:H679–685

    CAS  PubMed  Google Scholar 

  28. Suzuma K, Takagi H, Otani A, Honda Y (1998) Hypoxia and vascular endothelial growth factor stimulate angiogenic integrin expression in bovine retinal microvascular endothelial cells. Invest Ophthalmol Vis Sci 39:1028–1035

    CAS  PubMed  Google Scholar 

  29. Paulhe F, Racaud-Sultan C, Ragab A, et al (2001) Differential regulation of phosphoinositide metabolism by alphavbeta3 and alphavbeta5 integrins upon smooth muscle cell migration. J Biol Chem 276:41832–41840

    Article  CAS  PubMed  Google Scholar 

  30. Soldi R, Mitola S, Strasly M, Defilippi P, Tarone G, Bussolino F (1999) Role of alphavbeta3 integrin in the activation of vascular endothelial growth factor receptor-2. EMBO J 18:882–892

    CAS  Google Scholar 

  31. Reynolds LE, Wyder L, Lively JC, et al (2002) Enhanced pathological angiogenesis in mice lacking beta3 integrin or beta3 and beta5 integrins. Nat Med 8:27–34

    Article  CAS  PubMed  Google Scholar 

  32. Eliceri BP, Cheresh DA (2000) Role of alpha v integrins during angiogenesis. Cancer J 6[Suppl 3]:S245–249

    Google Scholar 

  33. Hohlfeld R, Engel AG (1994) The immunobiology of muscle. Immunol Today 15:269–274

    Article  CAS  PubMed  Google Scholar 

  34. Lundberg I, Ulfgren AK, Nyberg P, Andersson U, Klareskog L (1997) Cytokine production in muscle tissue of patients with idiopathic inflammatory myopathies. Arthritis Rheum 40:865–874

    CAS  PubMed  Google Scholar 

  35. Sawano A, Iwai S, Sakurai Y, et al (2001) Flt-1, vascular endothelial growth factor receptor 1, is a novel cell surface marker for the lineage of monocyte-macrophages in humans. Blood 97:785–791

    Article  CAS  PubMed  Google Scholar 

  36. Ahmed A, Dunk C, Ahmad S, Khaliq A (2000) Regulation of placental vascular endothelial growth factor (VEGF) and placenta growth factor (PIGF) and soluble Flt-1 by oxygen. Placenta 21[Suppl A]:S16–24

  37. Maulik N, Das DK (2002) Potentiation of angiogenic response by ischemic and hypoxic preconditioning of the heart. J Cell Mol Med 6:13–24

    CAS  PubMed  Google Scholar 

  38. Parenti A, Brogelli L, Filippi S, Donnini S, Ledda F (2002) Effect of hypoxia and endothelial loss on vascular smooth muscle cell responsiveness to VEGF-A:role of flt-1/VEGF-receptor-1. Cardiovasc Res 55:201–212

    Article  CAS  PubMed  Google Scholar 

  39. Olfert IM, Breen EC, Mathieu-Costello O, Wagner PD (2001) Chronic hypoxia attenuates resting and exercise-induced VEGF, flt-1 and flk-1 mRNR levels in skeletal muscle. J Appl Physiol 90:1532–1538

    CAS  PubMed  Google Scholar 

  40. Rando TA (2001) Role of nitric oxide in the pathogenesis of muscular dystrophies:a "two hit" hypothesis of the cause of muscle necrosis. Microsc Res Tech 55:223–235

    Article  CAS  PubMed  Google Scholar 

  41. Semenza GL (2001) Hypoxia-inducible factor 1:oxygen homeostasis and disease pathophysiology. Trends Mol Med 7:345–350

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Academy of Finland, TEKES, University of Helsinki, Sigrid Juselius Foundation, and Finska Läkaresällskapet. We would like to acknowledge the skillful technical assistance by bioanalyst Eija Kaila and the secretarial work by Outi Rauanheimo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yrjö T. Konttinen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konttinen, Y.T., Mackiewicz, Z., Povilėnaitė, D. et al. Disease-associated increased HIF-1, αvβ3 integrin, and Flt-1 do not suffice to compensate the damage-inducing loss of blood vessels in inflammatory myopathies. Rheumatol Int 24, 333–339 (2004). https://doi.org/10.1007/s00296-003-0379-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-003-0379-z

Keywords

Navigation