Skip to main content
Log in

Chaperoning RPA during DNA metabolism

  • Mini-Review
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Single-stranded DNA (ssDNA) is widely generated during DNA metabolisms including DNA replication, repair and recombination and is susceptible to digestion by nucleases and secondary structure formation. It is vital for DNA metabolism and genome stability that ssDNA is protected and stabilized, which are performed by the major ssDNA-binding protein, and replication protein A (RPA) in these processes. In addition, RPA-coated ssDNA also serves as a protein–protein-binding platform for coordinating multiple events during DNA metabolisms. However, little is known about whether and how the formation of RPA–ssDNA platform is regulated. Here we highlight our recent study of a novel RPA-binding protein, Regulator of Ty1 transposition 105 (Rtt105) in Saccharomyces cerevisiae, which regulates the RPA–ssDNA platform assembly at replication forks. We propose that Rtt105 functions as an “RPA chaperone” during DNA replication, likely also promoting the assembly of RPA–ssDNA platform in other processes in which RPA plays a critical role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aitchison J, Rout M (2012) The yeast nuclear pore complex and transport through it. Genetics 190:855–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akey CW, Luger K (2003) Histone chaperones and nucleosome assembly. Curr Opin Struct Biol 13:6–14

    Article  CAS  PubMed  Google Scholar 

  • Arunkumar AI, Stauffer ME, Bochkareva E, Bochkarev A, Chazin WJ (2003) Independent and coordinated functions of replication protein A tandem high affinity single-stranded DNA binding domains. J Biol Chem 278:41077–41082

    Article  CAS  PubMed  Google Scholar 

  • Belanger KD, Simmons LA, Roth JK, VanderPloeg KA, Lichten LB, Fahrenkrog B (2004) The karyopherin Msn5/Kap142 requires Nup82 for nuclear export and performs a function distinct from translocation in RPA protein import. J Biol Chem 279:43530–43539

    Article  CAS  PubMed  Google Scholar 

  • Belanger KD, Griffith AL, Baker HL, Hansen JN, Kovacs LA, Seconi JS, Strine AC (2011) The karyopherin Kap95 and the C-termini of Rfa1, Rfa2, and Rfa3 are necessary for efficient nuclear import of functional RPA complex proteins in Saccharomyces cerevisiae. DNA Cell Biol 30:641–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bochkareva E, Belegu V, Korolev S, Bochkarev A (2001) Structure of the major single-stranded DNA-binding domain of replication protein A suggests a dynamic mechanism for DNA binding. EMBO J 20: 612–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bochkareva E, Korolev S, Lees-Miller SP, Bochkarev A (2002) Structure of the RPA trimerization core and its role in the multistep DNA-binding mechanism of RPA. EMBO J 21:1855–1863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braet C, Stephan H, Dobbie IM, Togashi DM, Ryder AG, Foldes-Papp Z, Lowndes N, Nasheuer HP (2007) Mobility and distribution of replication protein A in living cells using fluorescence correlation spectroscopy. Exp Mol Pathol 82:156–162

    Article  CAS  PubMed  Google Scholar 

  • Brill SJ, Stillman B (1989) Yeast replication factor-A functions in the unwinding of the SV40 origin of DNA replication. Nature 342:92–95

    Article  CAS  PubMed  Google Scholar 

  • Brill SJ, Stillman B (1991) Replication factor-A from Saccharomyces cerevisiae is encoded by three essential genes coordinately expressed at S phase. Genes Dev 5: 1589–1600

    Article  CAS  PubMed  Google Scholar 

  • Brosey CA, Chagot M-E, Ehrhardt M, Pretto DI, Weiner BE, Chazin WJ (2009) NMR analysis of the architecture and functional remodeling of a modular multidomain protein, RPA. J Am Chem Soc 131:6346–6347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brosey CA, Yan C, Tsutakawa SE, Heller WT, Rambo RP, Tainer JA, Ivanov I, Chazin WJ (2013) A new structural framework for integrating replication protein A into DNA processing machinery. Nucleic Acids Res 41:2313–2327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brosey CA, Soss SE, Brooks S, Yan C, Ivanov I, Dorai K, Chazin WJ (2015) Functional dynamics in replication protein A DNA binding and protein recruitment domains. Structure 23:1028–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bullock PA (1997) The initiation of simian virus 40 DNA replication in vitro. Crit Rev Biochem Mol Biol 32:503–568

    Article  CAS  PubMed  Google Scholar 

  • Burgess RJ, Zhang Z (2013) Histone chaperones in nucleosome assembly and human disease. Nat Struct Mol Biol 20:14–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen R, Wold MS (2014) Replication protein A: single-stranded DNA’s first responder. BioEssays 36: 1156–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Le S, Basu A, Chazin WJ, Yan J (2015) Mechanochemical regulations of RPA’s binding to ssDNA. Sci Rep 5: 9296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen R, Subramanyam S, Elcock AH, Spies M, Wold MS (2016) Dynamic binding of replication protein a is required for DNA repair. Nucleic Acids Res 44:5758–5772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chook YM, Suel KE (2011) Nuclear import by karyopherin-betas: recognition and inhibition. Biochim Biophys Acta 1813:1593–1606

    Article  CAS  PubMed  Google Scholar 

  • Chung WH, Zhu Z, Papusha A, Malkova A, Ira G (2010) Defective resection at DNA double-strand breaks leads to de novo telomere formation and enhances gene targeting. PLoS Genet 6: e1000948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins SR, Miller KM, Maas NL, Roguev A, Fillingham J, Chu CS, Schuldiner M, Gebbia M, Recht J, Shales M et al (2007) Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446:806–810

    Article  CAS  PubMed  Google Scholar 

  • de Laat WL, Jaspers NG, Hoeijmakers JH (1999) Molecular mechanism of nucleotide excision repair. Genes Dev 13:768–785

    Article  PubMed  Google Scholar 

  • Deng X, Habel JE, Kabaleeswaran V, Snell EH, Wold MS, Borgstahl GEO (2007) Structure of the full-length human RPA14/32 complex gives insights into the mechanism of DNA binding and complex formation. J Mol Biol 374:865–876

    Article  CAS  PubMed  Google Scholar 

  • Dong A, Liu Z, Zhu Y, Yu F, Li Z, Cao K, Shen WH (2005) Interacting proteins and differences in nuclear transport reveal specific functions for the NAP1 family proteins in plants. Plant Physiol 138:1446–1456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fairman MP, Stillman B (1988) Cellular factors required for multiple stages of SV40 DNA replication in vitro. EMBO J 7:1211–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan J, Pavletich NP (2012) Structure and conformational change of a replication protein A heterotrimer bound to ssDNA. Genes Dev 26:2337–2347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fanning E, Klimovich V, Nager AR (2006) A dynamic model for replication protein A (RPA) function in DNA processing pathways. Nucleic Acids Res 34:4126–4137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flynn RL, Zou L (2010) Oligonucleotide/oligosaccharide-binding fold proteins: a growing family of genome guardians. Crit Rev Biochem Mol Biol 45:266–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garavís M, Calvo O (2017) Sub1/PC4, a multifaceted factor: from transcription to genome stability. Curr Genet 63:1023–1035

    Article  CAS  PubMed  Google Scholar 

  • Gibb B, Ye LF, Gergoudis SC, Kwon Y, Niu H, Sung P, Greene EC (2014) Concentration-dependent exchange of replication protein A on single-stranded DNA revealed by single-molecule imaging. PLoS One 9:e87922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurard-Levin ZA, Quivy JP, Almouzni G (2014) Histone chaperones: assisting histone traffic and nucleosome dynamics. Annu Rev Biochem 83:487–517

    Article  CAS  PubMed  Google Scholar 

  • Hamperl S, Bocek MJ, Saldivar JC, Swigut T, Cimprich KA (2017) Transcription–replication conflict orientation modulates R-loop levels and activates distinct DNA damage responses. Cell 170:774–786 e719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haring SJ, Mason AC, Binz SK, Wold MS (2008) Cellular functions of human RPA1. Multiple roles of domains in replication, repair, and checkpoints. J Biol Chem 283:19095–19111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iftode C, Daniely Y, Borowiec JA (1999) Replication protein A (RPA): the eukaryotic SSB. Crit Rev Biochem Mol Biol 34:141–180

    Article  CAS  PubMed  Google Scholar 

  • Ikegami T, Kuraoka I, Saijo M, Kodo N, Kyogoku Y, Morikawa K, Tanaka K, Shirakawa M (1998) Solution structure of the DNA- and RPA-binding domain of the human repair factor XPA. Nat Struct Mol Biol 5:701

    Article  CAS  Google Scholar 

  • Jasencakova Z, Scharf AN, Ask K, Corpet A, Imhof A, Almouzni G, Groth A (2010) Replication stress interferes with histone recycling and predeposition marking of new histones. Mol Cell 37:736–743

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Klimovich V, Arunkumar AI, Hysinger EB, Wang Y, Ott RD, Guler GD, Weiner B, Chazin WJ, Fanning E (2006) Structural mechanism of RPA loading on DNA during activation of a simple pre-replication complex. EMBO J 25:5516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson DS, Bai L, Smith BY, Patel SS, Wang MD (2007) Single-molecule studies reveal dynamics of DNA unwinding by the ring-shaped T7 helicase. Cell 129:1299–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keck KM, Pemberton LF (2011) Interaction with the histone chaperone Vps75 promotes nuclear localization and HAT activity of Rtt109 in vivo. Traffic 12: 826–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keck KM, Pemberton LF (2012) Histone chaperones link histone nuclear import and chromatin assembly. Biochim Biophys Acta 1819:277–289

    Article  CAS  PubMed  Google Scholar 

  • Kemmerich FE, Daldrop P, Pinto C, Levikova M, Cejka P, Seidel R (2016) Force regulated dynamics of RPA on a DNA fork. Nucleic Acids Res 44:5837–5848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim C, Snyder RO, Wold MS (1992) Binding properties of replication protein A from human and yeast cells. Mol Cell Biol 12:3050–3059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim C, Paulus BF, Wold MS (1994) Interactions of human replication protein A with oligonucleotides. Biochemistry 33:14197–14206

    Article  CAS  PubMed  Google Scholar 

  • Krejci L, Altmannova V, Spirek M, Zhao X (2012) Homologous recombination and its regulation. Nucleic Acids Res 40:5795–5818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leshets M, Ramamurthy D, Lisby M, Lehming N, Pines O (2018) Fumarase is involved in DNA double-strand break resection through a functional interaction with Sae2. Curr Genet 64:697–712

    Article  CAS  PubMed  Google Scholar 

  • Leslie DM, Zhang W, Timney BL, Chait BT, Rout MP, Wozniak RW, Aitchison JD (2004) Characterization of karyopherin cargoes reveals unique mechanisms of Kap121p-mediated nuclear import. Mol Cell Biol 24:8487–8503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li GM (2008) Mechanisms and functions of DNA mismatch repair. Cell Res 18:85–98

    Article  CAS  PubMed  Google Scholar 

  • Li S, Xu Z, Xu J, Zuo L, Yu C, Zheng P, Gan H, Wang X, Li L, Sharma S et al (2018) Rtt105 functions as a chaperone for replication protein A to preserve genome stability. EMBO J 37: e99154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu SF, Xu ZY, Leng H, Zheng P, Yang JY, Chen KF, Feng JX, Li Q (2017) RPA binds histone H3-H4 and functions in DNA replication-coupled nucleosome assembly. Science 355:415–420

    Article  CAS  PubMed  Google Scholar 

  • Marechal A, Zou L (2015) RPA-coated single-stranded DNA as a platform for post-translational modifications in the DNA damage response. Cell Res 25:9–23

    Article  CAS  PubMed  Google Scholar 

  • Mijic S, Zellweger R, Chappidi N, Berti M, Jacobs K, Mutreja K, Ursich S, Ray Chaudhuri A, Nussenzweig A, Janscak P et al (2017) Replication fork reversal triggers fork degradation in BRCA2-defective cells. Nat Commun 8:859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikolaskova B, Jurcik M, Cipakova I, Kretova M, Chovanec M, Cipak L (2018) Maintenance of genome stability: the unifying role of interconnections between the DNA damage response and RNA-processing pathways. Curr Genet 64:971–983

    Article  CAS  PubMed  Google Scholar 

  • Mosammaparast N, Ewart CS, Pemberton LF (2002) A role for nucleosome assembly protein 1 in the nuclear transport of histones H2A and H2B. EMBO J 21:6527–6538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pokhrel N, Caldwell CC, Corless EI, Tillison EA, Tibbs J, Jocic N, Tabei SMA, Wold MS, Spies M, Antony E (2019) Dynamics and selective remodeling of the DNA-binding domains of RPA. Nat Struct Mol Biol 26:129–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruff P, Donnianni RA, Glancy E, Oh J, Symington LS (2016) RPA stabilization of single-stranded DNA is critical for break-induced replication. Cell Rep 17:3359–3368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • San Filippo J, Sung P, Klein H (2008) Mechanism of eukaryotic homologous recombination. Annu Rev Biochem 77:229–257

    Article  CAS  PubMed  Google Scholar 

  • Scholes DT, Banerjee M, Bowen B, Curcio MJ (2001) Multiple regulators of Ty1 transposition in Saccharomyces cerevisiae have conserved roles in genome maintenance. Genetics 159:1449–1465

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sogo JM, Lopes M, Foiani M (2002) Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science 297:599–602

    Article  CAS  PubMed  Google Scholar 

  • Straube K, Blackwell JS Jr, Pemberton LF (2010) Nap1 and Chz1 have separate Htz1 nuclear import and assembly functions. Traffic 11:185–197

    Article  CAS  PubMed  Google Scholar 

  • Symington LS, Gautier J (2011) Double-strand break end resection and repair pathway choice. Annu Rev Genet 45:247–271

    Article  CAS  PubMed  Google Scholar 

  • Toledo LI, Altmeyer M, Rask MB, Lukas C, Larsen DH, Povlsen LK, Bekker-Jensen S, Mailand N, Bartek J, Lukas J (2013) ATR prohibits replication catastrophe by preventing global exhaustion of RPA. Cell 155:1088–1103

    Article  CAS  PubMed  Google Scholar 

  • Villa-Hernández S, Bermejo R (2018) Cohesin dynamic association to chromatin and interfacing with replication forks in genome integrity maintenance. Curr Genet 64:1005–1013

    Article  CAS  PubMed  Google Scholar 

  • Wobbe CR, Weissbach L, Borowiec JA, Dean FB, Murakami Y, Bullock P, Hurwitz J (1987) Replication of simian virus 40 origin-containing DNA in vitro with purified proteins. Proc Natl Acad Sci USA 84:1834–1838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wold MS (1997) Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu Rev Biochem 66:61–92

    Article  CAS  PubMed  Google Scholar 

  • Wold MS, Kelly T (1988) Purification and characterization of replication protein A, a cellular protein required for in vitro replication of simian virus 40 DNA. Proc Natl Acad Sci USA 85:2523–2527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yates LA, Aramayo RJ, Pokhrel N, Caldwell CC, Kaplan JA, Perera RL, Spies M, Antony E, Zhang X (2018) A structural and dynamic model for the assembly of replication protein A on single-stranded DNA. Nat Commun 9:5447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida K, Blobel G (2001) The karyopherin Kap142p/Msn5p mediates nuclear import and nuclear export of different cargo proteins. J Cell Biol 152:729–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zellweger R, Dalcher D, Mutreja K, Berti M, Schmid JA, Herrador R, Vindigni A, Lopes M (2015) Rad51-mediated replication fork reversal is a global response to genotoxic treatments in human cells. J Cell Biol 208:563–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou Y, Liu Y, Wu X, Shell SM (2006) Functions of human replication protein A (RPA): from DNA replication to DNA damage and stress responses. J Cell Physiol 208:267–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from NSFC [31725015, 31830048 (QL) and 31671332 (JF)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Li.

Additional information

Communicated by M. Kupiec.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Dong, Z., Yang, S. et al. Chaperoning RPA during DNA metabolism. Curr Genet 65, 857–864 (2019). https://doi.org/10.1007/s00294-019-00945-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-019-00945-3

Keywords

Navigation