Skip to main content
Log in

Fusarium oxysporum f. sp. lycopersici C2H2 transcription factor FolCzf1 is required for conidiation, fusaric acid production, and early host infection

  • Original Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The soil-borne, asexual fungus Fusarium oxysporum f.sp. lycopersici (Fol) is a causal agent of tomato wilt disease. The infection process of Fol comprises root recognition, adhesion, penetration, colonization of the root cortex and hyphal proliferation within the xylem vessels, which are under the regulation of virulence-involved transcription factors (TFs). In this study, we identified a gene, designated FolCZF1, which encodes a C2H2 TF in Fol. The homologs of FolCzf1 are also known to affect pathogenicity in F. graminearum and Magnaporthe oryzae on wheat and rice, respectively. We learned that FolCZF1 transcript level is upregulated in conidia and early host infection stage, which led us to hypothesize that FolCzf1 is associated with early host infection in Fol. The FolCZF1 deletion mutant (ΔFolCZF1) exhibited defects in growth rate, conidiation, conidia morphology and a complete loss of virulence on tomato root. Further microscopic observation showed that ΔFolCZF1 can penetrate the root but the primary infection hypha cannot extend its colonization inside the host tissue, suggesting that FolCzf1 TF plays an important role in early infection. Fusaric acid, a secondary metabolite produced by Fusarium species, is suggested as a virulence factor in many crop diseases. We found that FolCzf1 plays a critical role in fusaric acid production by regulating the expression of fusaric acid biosynthesis genes. In summary, FolCzf1 is required for conidiation, secondary metabolism, and early host infection in Fol, and we propose that homologs of FolCzf1 are required for early parasitic growth in other plant pathogenic filamentous fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agarwal P, Arora R, Ray S, Singh AK, Singh VP, Takatsuji H, Kapoor S, Tyagi AK (2007) Genome-wide identification of C2H2 zinc-finger gene family in rice and their phylogeny and expression analysis. Plant Mol Biol 65:467–485

    Article  CAS  PubMed  Google Scholar 

  • Asuncion Garcia-Sanchez M, Martin-Rodrigues N, Ramos B, de Vega-Bartol JJ, Perlin MH, Diaz-Minguez JM (2010) Fost12: the Fusarium oxysporum homolog of the transcription factor Ste12: is upregulated during plant infection and required for virulence. Fungal Genet Biol 47:216–225

    Article  CAS  PubMed  Google Scholar 

  • Bluhm BH, Kim H, Butchko RA, Woloshuk CP (2008) Involvement of ZFR1 of Fusarium verticillioides in kernel colonization and the regulation of FST1: a putative sugar transporter gene required for fumonisin biosynthesis on maize kernels. Mol Plant Pathol 9:203–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boenisch MJ, Schafer W (2011) Fusarium graminearum forms mycotoxin producing infection structures on wheat. BMC Plant Biol 11:110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Böhm S, Frishman D, Mewes HW (1997) Variations of the C2H2 zinc finger motif in the yeast genome and classification of yeast zinc finger proteins. Nucleic Acids Res 25:2464–2469

    Article  PubMed  PubMed Central  Google Scholar 

  • Bourett TM, Howard RJ (1990) In vitro development of penetration structures in the rice blast fungus Magnaporthe grisea. Can J Bot 68:329–342

    Article  Google Scholar 

  • Brandhoff B, Simon A, Dornieden A, Schumacher J (2017) Regulation of conidiation in Botrytis cinerea involves the light-responsive transcriptional regulators BcLTF3 and BcREG1. Curr Genet 63:931–949

    Article  CAS  PubMed  Google Scholar 

  • Bravo-Ruiz G, Ruiz-Roldan C, Roncero MI (2013) Lipolytic system of the tomato pathogen Fusarium oxysporum f. sp. lycopersic. Mol Plant Microbe Interact 26:1054–1067

    Article  CAS  PubMed  Google Scholar 

  • Brayer KJ, Kulshreshtha S, Segal DJ (2008) The protein-binding potential of C2H2 zinc finger domains. Cell Biochem Biophys 51:9–19

    Article  CAS  PubMed  Google Scholar 

  • Brown DW, Butchko RA, Busman M, Proctor RH (2012) Identification of gene clusters associated with fusaric acid fusarin and perithecial pigment production in Fusarium verticillioides. Fungal Genet Biol 49:521–532

    Article  CAS  PubMed  Google Scholar 

  • Brown DW, Busman M, Proctor RH (2014) Fusarium verticillioides SGE1 is required for full virulence and regulates expression of protein effector and secondary metabolite biosynthetic genes. Mol Plant Microbe Interact 27:809–823

    Article  CAS  PubMed  Google Scholar 

  • Brown DW, Lee SH, Kim LH, Ryu JG, Lee S, Seo Y, Kim YH, Busman M, Yun SH, Proctor RH, Lee T (2015) Identification of a 12-gene fusaric acid biosynthetic gene cluster in Fusarium species through comparative and functional genomics. Mol Plant Microbe Interact 28:319–332

    Article  CAS  PubMed  Google Scholar 

  • Bruno KS, Tenjo F, Li L, Hamer JE, Xu JR (2004) Cellular localization and role of kinase activity of PMK1 in Magnaporthe grisea. Eukaryot Cell 3:1525–1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao H, Huang P, Zhang L, Shi Y, Sun D, Yan Y, Liu X, Dong B, Chen G, Snyder JH, Lin F, Lu J (2016) Characterization of 47 Cys2-His2 zinc finger proteins required for the development and pathogenicity of the rice blast fungus Magnaporthe oryzae. New Phytol 211:1035–1051

    Article  CAS  PubMed  Google Scholar 

  • Caracuel Z, Roncero MIG, Espeso EA, Gonzalez-Verdejo CI, Garcia-Maceira FI, Di Pietro A (2003) The pH signalling transcription factor PacC controls virulence in the plant pathogen Fusarium oxysporum. Mol Microbiol 48:765–779

    Article  CAS  PubMed  Google Scholar 

  • Chen WQ, Provart NJ, Glazebrook J, Katagiri F, Chang HS, Eulgem T, Mauch F, Luan S, Zou G, Whitham SA, Budworth PR, Tao Y, Xie Z, Chen X, Lam S, Kreps JA, Harper JF, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dangl JL, Wang X, Zhu T (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14:559–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chumley FG, Valent B (1990) Genetic analysis of melanin deficient non-pathogenic mutants of Magnaporthe grisea. Mol Plant Microbe Interact 3:135–143

    Article  CAS  Google Scholar 

  • Ciftci-Yilmaz S, Mittler R (2008) The zinc finger network of plants. Cell Mol Life Sci 65:1150–1160

    Article  CAS  PubMed  Google Scholar 

  • Dai Y, Cao ZY, Huang LH, Liu SX, Shen ZH, Wang YY, Wang H, Zhang H, Li D, Song F (2016) CCR4-Not complex subunit Not2 plays critical roles in vegetative growth conidiation and virulence in watermelon Fusarium wilt pathogen Fusarium oxysporum f. sp niveum. Front Microbiol 7:1449

    PubMed  PubMed Central  Google Scholar 

  • Dean R, Van Kan JAL, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD (2012) The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:804–804

    Article  PubMed Central  Google Scholar 

  • Denisov Y, Freeman S, Yarden O (2011) Inactivation of Snt2: a BAH/PHD-containing transcription factor impairs pathogenicity and increases autophagosome abundance in Fusarium oxysporum. Mol Plant Pathol 12:449–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Pietro A. and Roncero MI (1998) Cloning expression and role in pathogenicity of pg1 encoding the major extracellular endopolygalacturonase of the vascular wilt pathogen Fusarium oxysporum. Mol Plant Microbe Interact 11:91–98

    Article  PubMed  Google Scholar 

  • Ding Z, Li M, Sun F, Xi P, Sun L, Zhang L, Jiang Z (2015) Mitogen-activated protein kinases are associated with the regulation of physiological traits and virulence in Fusarium oxysporum f. sp. cubense. Plos One 10:e0122634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di-Pietro A, Garcia-Maceira F, Meglecz E, Roncero M (2001) A MAP kinase of the vascular wilt fungus Fusarium oxysporum is essential for root penetration and pathogenesis. Mol Microbiol 39:1140–1452

    Article  CAS  PubMed  Google Scholar 

  • Divon HH, Ziv C, Davydov O, Yarden O, Fluhr R (2006) The global nitrogen regulator FNR1: regulates fungal nutrition-genes and fitness during Fusarium oxysporum pathogenesis. Mol Plant Pathol 7:485–497

    Article  CAS  PubMed  Google Scholar 

  • Englbrecht CC, Schoof H, Böhm S (2004) Conservation diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome. Bmc Genomics 5:39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalezcendales Y, Catanzariti AM, Baker B, Mcgrath DJ, Jones DA (2016) Identification of I-7 expands the repertoire of genes for resistance to Fusarium wilt in tomato to three resistance gene classes. Mol Plant Pathol 17:448–463

    Article  CAS  Google Scholar 

  • Gu Q, Zhang CQ, Liu X, Ma ZH (2015) A transcription factor FgSte12 is required for pathogenicity in Fusarium graminearum. Mol Plant Pathol 16:1–13

    Article  CAS  PubMed  Google Scholar 

  • Gupta YK, Dagdas YF, Martinez-Rocha AL, Kershaw MJ, Littlejohn GR, Ryder LS, Sklenar J, Menke F, Talbot NJ (2015) Septin-dependent assembly of the exocyst is essential for plant infection by Magnaporthe oryzae. Plant Cell 27:3277–3289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imazaki I, Kurahashi M, Iida Y, Tsuge T (2007) Fow2: a ZnII.2Cys6-type transcription regulator controls plant infection of the vascular wilt fungus Fusarium oxysporum. Mol Microbiol 63:737–753

    Article  CAS  PubMed  Google Scholar 

  • Islam KT, Bond JP, Fakhoury AM (2017) FvSNF1, the sucrose non-fermenting protein kinase gene of Fusarium virguliforme, is required for cell-wall-degrading enzymes expression and sudden death syndrome development in soybean. Curr Genet (2017) 63:723

    Article  CAS  PubMed  Google Scholar 

  • Kazan K, Gardiner DM, Manners JM (2012) On the trail of a cereal killer: recent advances in Fusarium graminearum pathogenomics and host resistance. Mol Plant Pathol 13:399–413

    Article  CAS  PubMed  Google Scholar 

  • Kleemann J, Rincon-Rivera LJ, Takahara H, Neumann U, Ver Loren van Themaat E, van der Does HC, Hacquard S, Stuber K, Will I, Schmalenbach W, Schmelzer E, O’Connell RJ (2012) Sequential delivery of host-induced virulence effectors by appressoria and intracellular hyphae of the phytopathogen Colletotrichum higginsianum. PLoS Pathog 8:e1002643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kusuya Y, Hagiwara D, Sakai K, Yaguchi T, Gonoi T, Takahashi H (2018) Transcription factor Afmac1 controls copper import machinery in Aspergillus fumigatus. Curr Genet 63:777–789

    Article  CAS  Google Scholar 

  • Laity JH, Lee BM, Wright PE (2001) Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol 11:39–46

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Berges MS, Di Pietro A, Daboussi MJ, Wahab HA, Vasnier C, Roncero MIG, Dufresne M, Hera C (2009) Identification of virulence genes in Fusarium oxysporum f. sp lycopersici by large-scale transposon tagging. Mol Plant Pathol 10:95–107

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Berges MS, Rispail N, Prados-Rosales RC, Di Pietro A (2010) A nitrogen response pathway regulates virulence functions in Fusarium oxysporum via the protein kinase TOR and the bZIP protein MeaB. Plant Cell 22:2459–2475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lópezberges MS, Capilla J, Turrà D, Schafferer L, Matthijs S, Jöchl C, Cornelis P, Guarro J, Haas H, Di Pietro A (2012) HapX-mediated iron homeostasis is essential for rhizosphere competence and virulence of the soilborne pathogen Fusarium oxysporum. Plant Cell 24:3805–3822

    Article  CAS  Google Scholar 

  • Leslie JF, Summerell BA (2006) The Fusarium laboratory manual. Blackwell Pub Professional, Ames, Iowa

    Book  Google Scholar 

  • Lysoe E, Pasquali M, Breakspear A, Kistler HC (2011) The transcription factor FgStuAp influences spore development pathogenicity and secondary metabolism in Fusarium graminearum. Mol Plant Microbe Interact 24:54–67

    Article  CAS  PubMed  Google Scholar 

  • Maier FJ, Miedaner T, Hadeler B, Felk A, Salomon S, Lemmens M, Kassner H, Schäfer W (2006) Involvement of trichothecenes in fusarioses of wheat barley and maize evaluated by gene disruption of the trichodiene synthase (Tri5) gene in three field isolates of different chemotype and virulence. Mol Plant Pathol 7:449–461

    Article  CAS  PubMed  Google Scholar 

  • Meshi T, Iwabuchi M (1995) Plant transcription factors. Plant Cell Physiol 36:1405–1420

    CAS  PubMed  Google Scholar 

  • Michielse CB, Martijn R (2009) Pathogen profile update: Fusarium oxysporum. Mol Plant Pathol 10:311–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michielse CB, Van WR, Reijnen L, Manders EMM, Boas S, Olivain C, Alabouvette C, Rep M (2009) The nuclear protein Sge1 of Fusarium oxysporum is required for parasitic growth. Plos Pathog 5:e1000637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nasmith CG, Walkowiak S, Wang L, Leung WWY, Gong YC, Johnston A, Harris LJ, Guttman DS, Subramaniam R (2011) Tri6 is a global transcription regulator in the phytopathogen Fusarium graminearum. Plos Pathog 7:e1002266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niehaus EM, von Bargen KW, Espino JJ, Pfannmuller A, Humpf HU, Tudzynski B (2014) Characterization of the fusaric acid gene cluster in Fusarium fujikuroi. Appl Microbiol Biotechnol 98:1749–1762

    Article  CAS  PubMed  Google Scholar 

  • Pabo CO, Sauer RT (1992) Transcription factors: structural families and principles of DNA recognition. Annu Rev Biochem 61:1053–1095

    Article  CAS  PubMed  Google Scholar 

  • Pietro AD, Madrid MP, Caracuel Z, Delgado-Jarana J, Roncero MIG (2003) Fusarium oxysporum: exploring the molecular arsenal of a vascular wilt fungus. Mol Plant Pathol 4:315–325

    Article  PubMed  Google Scholar 

  • Rispail N, Di Pietro A (2009) Fusarium oxysporum Ste12 controls invasive growth and virulence downstream of the Fmk1 MAPK cascade. Mol Plant Microbe Interact 22:830–839

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Roldan C, Pareja-Jaime Y, Gonzalez-Reyes JA, G-Roncero MI (2015) The transcription factor con7-1 is a master regulator of morphogenesis and virulence in Fusarium oxysporum. Mol Plant Microbe Interact 28:55–68

    Article  CAS  PubMed  Google Scholar 

  • Sarikaya Bayram Ö, Latgé JP, Bayram Ö (2018) MybA, a new player driving survival of the conidium of the human pathogen Aspergillus fumigatus. Curr Genet 64:141–146

    Article  CAS  PubMed  Google Scholar 

  • Schwechheimer C, Bevan M (1998) The regulation of transcription factor activity in plants. Trends Plant Sci 3:378–383

    Article  Google Scholar 

  • Son H, Seo YS, Min K, Park AR, Lee J, Jin JM, Lin Y, Cao P, Hong SY, Kim EK, Lee SH, Cho A, Lee S, Kim MG, Kim Y, Kim JE, Kim JC, Choi GJ, Yun SH, Lim JY, Kim M, Lee YH, Choi YD, Lee YW (2011) A phenome-based functional analysis of transcription factors in the cereal head blight fungus Fusarium graminearum. Plos Pathog 7:e1002310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Dam P, Fokkens L, Schmidt SM, Linmans JH, Kistler HC, Ma LJ, Rep M (2016) Effector profiles distinguish formae speciales of Fusarium oxysporum. Environ Microbiol 18:4087–4102

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Liu WD, Hou ZM, Wang CF, Zhou XY, Jonkers W, Ding S, Kistler HC, Xu JR (2011) A novel transcriptional factor important for pathogenesis and ascosporogenesis in Fusarium graminearum. Mol Plant Microbe Interact 24:118–128

    Article  CAS  PubMed  Google Scholar 

  • Yang P, Chen Y, Wu H, Fang W, Liang Q, Zheng Y, Olsson S, Zhang D, Zhou J, Wang Z, Zheng W (2018) The 5-oxoprolinase is required for conidiation, sexual reproduction, virulence and deoxynivalenol production of Fusarium graminearum. Curr Genet 64:285–301

    Article  CAS  PubMed  Google Scholar 

  • Yu FW, Gu Q, Yun YZ, Yin YN, Xu JR, Shim WB, Ma Z (2014) The TOR signaling pathway regulates vegetative development and virulence in Fusarium graminearum. New Phytol 203:219–232

    Article  CAS  PubMed  Google Scholar 

  • Yun YZ, Liu ZY, Yin YN, Jiang JH, Chen Y, Xu JR, Ma Z (2015) Functional analysis of the Fusarium graminearum phosphatome. New Phytol 207:119–134

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Natural Science Foundation of Fujian Province (2016J01113), Young Teacher Education Research Project of Fujian Province (JAT160178), Fujian Agriculture and Forestry University Outstanding Youth Scientific Research Project (xjq201625) and Natural Science Foundation of China (31601583).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingzi Yun, Won-Bo Shim or Zonghua Wang.

Additional information

Communicated by M. Kupiec.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1. Phylogenetic and conserved domain analyses of FolCzf1 orthologs. a The phylogenetic analysis is based on full-length amino-acid sequences using the neighbor-joining method by MEGA 5 software. The Bootstrap replicates were 1000. b The light grey square and the dark grey hexagon represent C2H2 zinc finger domain and coiled-coil motif, respectively.

Fig. S2. Amino acid sequence alignment of FolCzf1 and its homolog in F. verticillioides. Identical amino acids are highlighted with a shaded background. Conserved C2H2 zinc finger motifs are highlighted with red lines.

Fig. S3. Generation and identification of FolCZF1 gene deletion mutants. The knockout strategy for FolCZF1 gene in F. oxysporum genome is shown in left. The gene-specific probe (probe1) and hygromycin phosphotransferase (HPH) probe (probe2) used for Southern blot analysis of the gene-knockout mutants are depicted. Thick arrows indicate orientations of FolCZF1 and HPH genes. The restriction enzymes used for Southern blots are KpnI and NruI for probe1 and probe 2, respectively. When hybridized with probe1, a 2.5-kb band was observed in the wild-type strain but not in ΔFolCZF1 mutants. When hybridized with probe2, the ΔFolCZF1 mutants showed a 3.9-kb band characteristic of the gene-replacement event, but not in wild-type sample.

Fig. S4. Subcellular localization of FolCzf1 in F. oxysporum. FolCzf1 was localized to the nucleus in hypha, conidia and germinating conidia. 4,6-Diamidino-2-phenylindole (DAPI) was used to stain nucleus of the cell. The merged image of GFP and DAPI staining showed that FolCzf1-GFP localizes to the nucleus. DIC, differential interference contrast. Bar = 10 μm.

Fig. S5. The ΔGCF3 mutant is defective in virulence in rice and barley leaves. a The wild-type (WT) and two GCF3 deletion mutant (ΔGCF3-1 and ΔGCF3-2) strains were cultured on CM plates at 28 °C for 7 days. b Barley leaves (left) and rice leaves (right) were sprayed with fungal conidia.

Supplementary material 1 (TIF 376 KB)

Supplementary material 2 (TIF 904 KB)

Supplementary material 3 (TIF 374 KB)

Supplementary material 4 (TIF 2419 KB)

Supplementary material 5 (TIF 3173 KB)

Supplementary material 6 (DOCX 19 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, Y., Zhou, X., Yang, S. et al. Fusarium oxysporum f. sp. lycopersici C2H2 transcription factor FolCzf1 is required for conidiation, fusaric acid production, and early host infection. Curr Genet 65, 773–783 (2019). https://doi.org/10.1007/s00294-019-00931-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-019-00931-9

Keywords

Navigation