Skip to main content
Log in

Transcription factor CCG-8 plays a pivotal role in azole adaptive responses of Neurospora crassa by regulating intracellular azole accumulation

  • Original Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Azoles are the most widely used antifungals for controlling fungal infections in clinic and agriculture. Fungi can adapt to azole stress by rapidly activating the transcription of a number of genes, and some of these genes can elevate resistance to azoles. We had reported the transcription factor CCG-8 as a new regulator in the adaptation to antifungal azole stress in Neurospora crassa and Fusarium verticillioides. In this study, we further investigate the mechanisms by which CCG-8 promotes fungal adaptation to azole stress using N. crassa as a model. While deletion of ccg-8 made N. crassa hypersensitive to azoles, ccg-8 overexpression strain was more resistant to azoles than wild type, which further confirmed the positive role of ccg-8 in the adaptation to antifungal azoles. Liquid chromatography–mass spectrometry analysis showed that deletion of ccg-8 resulted in decrease of ergosterol biosynthesis, and high accumulation of toxic sterol 14α-methyl-3,6-diol and ketoconazole (KTC) in the cells, whereas intracellular accumulation of ketoconazole was decreased in the ccg-8 overexpression strain as compared to wild type. For analyzing the effect of CCG-8 on azole export, we tested the contribution of predicted multidrug transporters to azole resistance and found that CDR4 is the major contributor for azole efflux in N. crassa. Interestingly, overexpression of cdr4 or erg11 in the ccg-8 deletion mutant restored its hypersensitive phenotype and overexpression of cdr4 can reduce the level of intracellular KTC. However, the double mutant of ccg-8 and cdr4 was more sensitive than each single mutant, suggesting that drug efflux pump CDR4 plays less contribution for intracellular azole accumulation in the ccg-8 deletion mutant, and CCG-8 may regulate drug uptake. Together, our results revealed that CCG-8 plays a pivotal role in azole adaptive responses of N. crassa by regulating the drug accumulation in the cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Blosser SJ, Cramer RA (2012) SREBP-dependent triazole susceptibility in Aspergillus fumigatus is mediated through direct transcriptional regulation of erg11A (cyp51A). Antimicrob Agents Chemother 56:248–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caudle KE, Barker KS, Wiederhold NP, Xu L, Homayouni R, Rogers PD (2011) Genomewide expression profile analysis of the Candida glabrata Pdr1 regulon. Eukaryot Cell 10:373–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Xue W, Zhou J, Zhang Z, Wei S, Liu X, Sun X, Wang W, Li S (2016) De-repression of CSP-1 activates adaptive responses to antifungal azoles. Sci Rep 6:19447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colot HV, Park G, Turner GE, Ringelberg C, Crew CM, Litvinkova L, Weiss RL, Borkovich KA, Dunlap JC (2006) A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc Natl Acad Sci USA 103:10352–10357

    Article  CAS  PubMed  Google Scholar 

  • Cools HJ, Hawkins NJ, Fraaije BA (2013) Constraints on the evolution of azole resistance in plant pathogenic fungi. Plant Pathol 62:36–42

    Article  CAS  Google Scholar 

  • Davis RH, de Serres FJ (1970) Genetic and microbiological research techniques for Neurospora crassa. Methods Enzymol 17:79–143

    Article  Google Scholar 

  • Du W, Coaker M, Sobel JD, Akins RA (2004) Shuttle vectors for Candida albicans: control of plasmid copy number and elevated expression of cloned genes. Curr Genet 45:390–398

    Article  CAS  PubMed  Google Scholar 

  • Dunkel N, Liu TT, Barker KS, Homayouni R, Morschhauser J, Rogers PD (2008) A gain-of-function mutation in the transcription factor Upc2p causes upregulation of ergosterol biosynthesis genes and increased fluconazole resistance in a clinical Candida albicans isolate. Eukaryot Cell 7:1180–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esquivel BD, White TC (2017) Accumulation of azole drugs in the fungal plant pathogen Magnaporthe oryzae is the result of facilitated diffusion influx. Front Microbiol 8:1320

    Article  PubMed  PubMed Central  Google Scholar 

  • Esquivel BD, Smith AR, Zavrel M, White TC (2015) Azole drug import into the pathogenic fungus Aspergillus fumigatus. Antimicrob Agents Chemother 59:3390–3398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira MED, Colombo AL, Paulsen I, Ren Q, Wortman J, Huang J, Goldman MHS, Goldman GH (2005) The ergosterol biosynthesis pathway, transporter genes, and azole resistance in Aspergillus fumigatus. Med Mycol 43:S313–S319

    Article  CAS  PubMed  Google Scholar 

  • Gulshan K, Moye-Rowley WS (2007) Multidrug resistance in fungi. Eukaryot Cell 6:1933–1942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagiwara D, Miura D, Shimizu K, Paul S, Ohba A, Gonoi T, Watanabe A, Kamei K, Shintani T, Moye-Rowley WS, Kawamoto S, Gomi K (2017) A novel Zn2-Cys6 transcription factor AtrR plays a key role in an azole resistance mechanism of Aspergillus fumigatus by co-regulating cyp51A and cdr1B expressions. PLoS Pathog 13:e1006096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Q, Cheng P, He Q, Liu Y (2005) The COP9 signalosome regulates the Neurospora circadian clock by controlling the stability of the SCFFWD–1 complex. Gene Dev 19:1518–1531

    Article  CAS  PubMed  Google Scholar 

  • Kolaczkowska A, Kolaczkowski M, Delahodde A, Goffeau A (2002) Functional dissection of Pdr1p, a regulator of multidrug resistance in Saccharomyces cerevisiae. Mol Genet Genomics 267:96–106

    Article  CAS  PubMed  Google Scholar 

  • Kolaczkowski M, van der Rest M, Cybularz-Kolaczkowska A, Soumillion JP, Konings WN, Goffeau A (1996) Anticancer drugs, ionophoric peptides, and steroids as substrates of the yeast multidrug transporter Pdr5p. J Biol Chem 271:31543–31548

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆Ct method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lombardi LM, Brody S (2005) Circadian rhythms in Neurospora crassa: clock gene homologues in fungi. Fungal Genet Biol 42:887–892

    Article  CAS  PubMed  Google Scholar 

  • MacPherson S, Akache B, Weber S, De Deken X, Raymond M, Turcotte B (2005) Candida albicans zinc cluster protein Upc2p confers resistance to antifungal drugs and is an activator of ergosterol biosynthetic genes. Antimicrob Agents Chemother 49:1745–1752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansfield BE, Oltean HN, Oliver BG, Hoot SJ, Leyde SE, Hedstrom L, White TC (2010) Azole drugs are imported by facilitated diffusion in Candida albicans and other pathogenic fungi. PLoS Pathog 6:e1001126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margolin B, Freitag M, Selker E (1997) Improved plasmids for gene targeting at the his-3 locus of Neurospora crassa by electroporation. Fungal Genet Rep 44:34–36

    Article  Google Scholar 

  • Morschhauser J, Barker KS, Liu TT, Bla BWJ, Homayouni R, Rogers PD (2007) The transcription factor Mrr1p controls expression of the MDR1 efflux pump and mediates multidrug resistance in Candida albicans. PLoS Pathog 3:e164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukhopadhyay K, Kohli A, Prasad R (2002) Drug susceptibilities of yeast cells are affected by membrane lipid composition. Antimicrob Agents Chemother 46:3695–3705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niimi M, Niimi K, Takano Y, Holmes AR, Fischer FJ, Uehara Y, Cannon RD (2004) Regulated overexpression of CDR1 in Candida albicans confers multidrug resistance. J Antimicrob Chemother 54:999–1006

    Article  CAS  PubMed  Google Scholar 

  • Pasrija R, Krishnamurthy S, Prasad T, Ernst JF, Prasad R (2005) Squalene epoxidase encoded by ERG1 affects morphogenesis and drug susceptibilities of Candida albicans. J Antimicrob Chemother 55:905–913

    Article  CAS  PubMed  Google Scholar 

  • Prasad T, Chandra A, Mukhopadhyay CK, Prasad R (2006) Unexpected link between iron and drug resistance of Candida spp.: Iron depletion enhances membrane fluidity and drug diffusion, leading to drug-susceptible cells. Antimicrob Agents Chemother 50:3597–3606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rognon B, Kozovska Z, Coste AT, Pardini G, Sanglard D (2006) Identification of promoter elements responsible for the regulation of MDR1 from Candida albicans, a major facilitator transporter involved in azole resistance. Microbiol-SGM 152:3701–3722

    Article  CAS  Google Scholar 

  • Schuetzer-Muehlbauer M, Willinger B, Egner R, Ecker G, Kuchler K (2003) Reversal of antifungal resistance mediated by ABC efflux pumps from Candida albicans functionally expressed in yeast. Int J Antimicrob Agents 22:291–300

    Article  CAS  PubMed  Google Scholar 

  • Silver PM, Oliver BG, White TC (2004) Role of Candida albicans transcription factor Upc2p in drug resistance and sterol metabolism. Eukaryot Cell 3:1391–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Wang W, Wang K, Yu X, Liu J, Zhou F, Xie B, Li S (2013) Sterol C-22 desaturase ERG5 mediates the sensitivity to antifungal azoles in Neurospora crassa and Fusarium verticillioides. Front Microbiol 4:127

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun X, Wang K, Yu X, Liu J, Zhang H, Zhou F, Xie B, Li S (2014) Transcription factor CCG-8 as a new regulator in the adaptation to antifungal azole stress. Antimicrob Agents Chemother 58:1434–1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sweigard J, Chumley F, Carroll A, Farrall L, Valent. B (1997) A series of vectors for fungal transformation. Fungal Genet Newsl 44:52–53

    Google Scholar 

  • Talibi D, Raymond M (1999) Isolation of a putative Candida albicans transcriptional regulator involved in pleiotropic drug resistance by functional complementation of a pdr1 pdr3 mutation in Saccharomyces cerevisiae. J Bacteriol 181:231–240

    CAS  PubMed  PubMed Central  Google Scholar 

  • Temporini ED, Alvarez ME, Mautino MR, Folco HD, Rosa AL (2004) The Neurospora crassa cfp promoter drives a carbon source-dependent expression of transgenes in filamentous fungi. J Appl Microbiol 96:1256–1264

    Article  CAS  PubMed  Google Scholar 

  • Tiwari A, Ngiilmei SD, Tamuli R (2018) The NcZrg-17 gene of Neurospora crassa encodes a cation diffusion facilitator transporter required for vegetative development, tolerance to endoplasmic reticulum stress and cellulose degradation under low zinc conditions. Curr Genet 64:811–819

    Article  CAS  PubMed  Google Scholar 

  • Vik A, Rine J (2001) Upc2p and Ecm22p, dual regulators of sterol biosynthesis in Saccharomyces cerevisiae. Mol Cell Biol 21:6395–6405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Virgilio S, Bertolini MC (2018) Functional diversity in the pH signaling pathway: an overview of the pathway regulation in Neurospora crassa. Curr Genet 64:529–534

    Article  CAS  PubMed  Google Scholar 

  • Vogel HJ (1956) A convenient growth medium for Neurospora (Medium N). Microb Genet Bull 13:42–43

    Google Scholar 

  • Wang K, Zhang Z, Chen X, Sun X, Jin C, Liu H, Li S (2015) Transcription factor ADS-4 regulates adaptive responses and resistance to antifungal azole stress. Antimicrob Agents Chemother 59:5396–5404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White MJ, Hirsch JP, Henry SA (1991) The OPI1 gene of Saccharomyces cerevisiae, a negative regulator of phospholipid biosynthesis, encodes a protein containing polyglutamine tracts and a leucine zipper. J Biol Chem 266:863–872

    CAS  PubMed  Google Scholar 

  • White TC, Marr KA, Bowden RA (1998) Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev 11:382–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willger SD, Puttikamonkul S, Kim KH, Burritt JB, Grahl N, Metzler LJ, Barbuch R, Bard M, Lawrence CB, Cramer RA Jr (2008) A sterol-regulatory element binding protein is required for cell polarity, hypoxia adaptation, azole drug resistance, and virulence in Aspergillus fumigatus. PLoS Pathog 4:e1000200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zavrel M, White TC (2015) Medically important fungi respond to azole drugs: an update. Future Microbiol 10:1355–1373

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhang Z, Zhang X, Zhang H, Sun X, Hu C, Li S (2012) CDR4 is the major contributor to azole resistance among four Pdr5p-like ABC transporters in Neurospora crassa. Fungal Biol 116:848–854

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project is supported by Grants 31771387 and 31671295 from National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianyun Sun.

Additional information

Communicated by M. Kupiec.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 649 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, W., Yin, Y., Ismail, F. et al. Transcription factor CCG-8 plays a pivotal role in azole adaptive responses of Neurospora crassa by regulating intracellular azole accumulation. Curr Genet 65, 735–745 (2019). https://doi.org/10.1007/s00294-018-0924-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-018-0924-7

Keywords

Navigation