Skip to main content
Log in

A helicase links upstream ORFs and RNA structure

  • Mini-Review
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Upstream open reading frames (uORFs) in 5′ UTRs of eukaryotic mRNAs are increasingly recognized as important elements that regulate cellular protein synthesis. Since uORFs can start from non-AUG codons, an enormous number of potential uORF initiation sites exists in 5′UTRs. However, only a subset of these sites is used and it has been unclear how actual start sites are selected. Studies of the DEAD-box helicase Ded1p from S. cerevisiae show that translation of uORFs with non-AUG initiation codons occurs upstream of mRNA structures that emerge with defective Ded1p. The data designate mRNA structure as important determinant for non-AUG initiation sites of uORFs. Ded1p can control this RNA structure and thereby regulate uORF translation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andrews SJ, Rothnagel JA (2014) Emerging evidence for functional peptides encoded by short open reading frames. Nat Rev Genet 15:193–204

    Article  CAS  PubMed  Google Scholar 

  • Barbosa C, Peixeiro I, Romao L (2013) Gene expression regulation by upstream open reading frames and human disease. PLoS Genet 9:e1003529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bol GM, Xie M, Raman V (2015) DDX3, a potential target for cancer treatment. Mol Cancer 14:188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brar GA, Yassour M, Friedman N, Regev A, Ingolia NT, Weissman JS (2012) High-resolution view of the yeast meiotic program revealed by ribosome profiling. Science 335:552–557

    Article  CAS  PubMed  Google Scholar 

  • Cabrera-Quio LE, Herberg S, Pauli A (2016) Decoding sORF translation—from small proteins to gene regulation. RNA Biol 13:1051–1059

    Article  PubMed  PubMed Central  Google Scholar 

  • Chuang RY, Weaver PL, Liu Z, Chang TH (1997) Requirement of the DEAD-Box protein ded1p for messenger RNA translation. Science 275:1468–1471

    Article  CAS  PubMed  Google Scholar 

  • Cleary JD, Ranum LP (2017) New developments in RAN translation: insights from multiple diseases. Curr Opin Genet Dev 44:125–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de la Cruz J, Iost I, Kressler D, Linder P (1997) The p20 and Ded1 proteins have antagonistic roles in eIF4E-dependent translation in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 94:5201–5206

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao Z, Putnam AA, Bowers HA, Guenther UP, Ye X, Kindsfather A, Hilliker AK, Jankowsky E (2016) Coupling between the DEAD-box RNA helicases Ded1p and eIF4A. Elife 5:e16408

    Article  PubMed  PubMed Central  Google Scholar 

  • Guenther UP, Weinberg DE, Zubradt MM, Tedeschi FA, Stawicki BN, Zagore LL, Brar GA, Licatalosi DD, Bartel DP, Weissman JS et al (2018) The helicase Ded1p controls use of near-cognate translation initiation codons in 5′ UTRs. Nature 559:130–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinnebusch AG (2014) The scanning mechanism of eukaryotic translation initiation. Annu Rev Biochem 83:779–812

    Article  CAS  PubMed  Google Scholar 

  • Hinnebusch AG, Ivanov IP, Sonenberg N (2016) Translational control by 5′-untranslated regions of eukaryotic mRNAs. Science 352:1413–1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingolia NT (2016) Ribosome footprint profiling of translation throughout the genome. Cell 165:22–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnstone TG, Bazzini AA, Giraldez AJ (2016) Upstream ORFs are prevalent translational repressors in vertebrates. EMBO J 35:706–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kearse MG, Wilusz JE (2017) Non-AUG translation: a new start for protein synthesis in eukaryotes. Genes Dev 31:1717–1731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolitz SE, Takacs JE, Lorsch JR (2009) Kinetic and thermodynamic analysis of the role of start codon/anticodon base pairing during eukaryotic translation initiation. RNA 15:138–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozak M (1990) Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes. Proc Natl Acad Sci USA 87:8301–8305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin F, Barends S, Jaeger S, Schaeffer L, Prongidi-Fix L, Eriani G (2011) Cap-assisted internal initiation of translation of histone H4. Mol Cell 41:197–209

    Article  CAS  PubMed  Google Scholar 

  • Putnam AA, Jankowsky E (2013) AMP sensing by DEAD-box RNA helicases. J Mol Biol 425:3839–3845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz J, Mah N, Neuenschwander M, Kischka T, Ratei R, Schlag PM, Castanos-Velez E, Fichtner I, Tunn PU, Denkert C et al (2018) Loss-of-function uORF mutations in human malignancies. Sci Rep 8:2395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sen ND, Zhou F, Ingolia NT, Hinnebusch AG (2015) Genome-wide analysis of translational efficiency reveals distinct but overlapping functions of yeast DEAD-box RNA helicases Ded1 and eIF4A. Genome Res 25:1196–1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma D, Jankowsky E (2014) The Ded1/DDX3 subfamily of DEAD-box RNA helicases. Crit Rev Biochem Mol Biol 49:343–360

    Article  CAS  PubMed  Google Scholar 

  • Shirokikh NE, Preiss T (2018) Translation initiation by cap-dependent ribosome recruitment: recent insights and open questions. Wiley Interdiscip Rev RNA 9:e1473

    Article  PubMed  Google Scholar 

  • Snijders Blok L, Madsen E, Juusola J, Gilissen C, Baralle D, Reijnders MR, Venselaar H, Helsmoortel C, Cho MT, Hoischen A et al (2015) Mutations in DDX3X are a common cause of unexplained intellectual disability with gender-specific effects on Wnt signaling. Am J Hum Genet 97:343–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spealman P, Naik AW, May GE, Kuersten S, Freeberg L, Murphy RF, McManus J (2018) Conserved non-AUG uORFs revealed by a novel regression analysis of ribosome profiling data. Genome Res 28:214–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starck SR, Tsai JC, Chen K, Shodiya M, Wang L, Yahiro K, Martins-Green M, Shastri N, Walter P (2016) Translation from the 5′ untranslated region shapes the integrated stress response. Science 351:aad3867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang HL, Yeh LS, Chen NK, Ripmaster T, Schimmel P, Wang CC (2004) Translation of a yeast mitochondrial tRNA synthetase initiated at redundant non-AUG codons. J Biol Chem 279:49656–49663

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Dou S, He F, Luo J, Wei L, Lu J (2018) Genome-wide maps of ribosomal occupancy provide insights into adaptive evolution and regulatory roles of uORFs during Drosophila development. PLoS Biol 16:e2003903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in our laboratory is supported by the NIH (GM118088 to E.J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eckhard Jankowsky.

Additional information

Communicated by M. Kupiec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jankowsky, E., Guenther, UP. A helicase links upstream ORFs and RNA structure. Curr Genet 65, 453–456 (2019). https://doi.org/10.1007/s00294-018-0911-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-018-0911-z

Keywords

Navigation