Skip to main content
Log in

A Cdc42 homolog in Colletotrichum gloeosporioides regulates morphological development and is required for ROS-mediated plant infection

  • Original Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The Rho GTPase Cdc42 is conserved in fungi and plays a key role in regulating polarity establishment, morphogenesis and differentiation. In this study, we identified an ortholog of Cdc42, CgCdc42, and functionally characterized it to determine the role of Cdc42 in the development and pathogenicity of Colletotrichum gloeosporioides, a causal agent of poplar anthracnose. Targeted deletion of CgCdc42 resulted in reduced vegetative growth and dramatic morphological defects, including the formation of elongated conidia and abnormally shaped appressoria. Moreover, CgCdc42 deletion mutants were less virulent on poplar leaves than were wild type. Appressoria formed by ΔCgCdc42 mutants were morphologically abnormal and present in lower numbers on poplar leaves than were those formed by wild type. However, an ROS scavenging assay indicated that the ΔCgCdc42 mutants maintained wild type pathogenicity in the absence of ROS despite having fewer appressoria than wild type, suggesting that the ΔCgCdc42 mutants were deficient in their tolerance of ROS. Additionally, we also found that the distribution of ROS was different after the deletion of CgCdc42, the ΔCgCdc42 mutants were hypersensitive to H2O2, and transcriptional analysis revealed that CgCdc42 is involved in the regulation of ROS-related genes. Furthermore, loss of CgCdc42 caused defects in cell wall integrity and an uneven distribution of chitin. These data collectively suggest that CgCdc42 plays an important role in the regulation of vegetative growth, morphological development, cell wall integrity and ROS-mediated plant infection in C. gloeosporioides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adams AE, Johnson DI, Longnecker RM, Sloat BF, Pringle JR (1990) CDC42 and CDC43, two additional genes involved in budding and the establishment of cell polarity in the yeast Saccharomyces cerevisiae. J Cell Biol 111:131–142

    Article  CAS  PubMed  Google Scholar 

  • Alberts AS (2001) Identification of a carboxyl-terminal diaphanous-related formin homology protein autoregulatory domain. J Biol Chem 276:2824

    Article  CAS  PubMed  Google Scholar 

  • Altwasser R et al (2015) Network modeling reveals cross talk of MAP Kinases during Adaptation to Caspofungin Stress in Aspergillus fumigatus. Plos One 10:e0136932

    Article  PubMed Central  PubMed  Google Scholar 

  • An B, Li B, Qin G, Tian S (2015) Function of small GTPase Rho3 in regulating growth, conidiation and virulence of Botrytis cinerea. Fungal Genet Biol 75:46

    Article  CAS  PubMed  Google Scholar 

  • Apostol I, Heinstein PF, Low PS (1989) Rapid stimulation of an oxidative burst during elicitation of cultured plant cells. Role in Defense Signal Transduction. Plant Physiol 90:109–116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Araujo-Palomares CL, Richthammer C, Seiler S, Castro-Longoria E (2011) Functional characterization and cellular dynamics of the CDC-42–RAC–CDC-24 module in Neurospora crassa. PLoS One 6:e27148. https://doi.org/10.1371/journal.pone.0027148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barhoom S, Sharon A (2004) cAMP regulation of “pathogenic” and “saprophytic” fungal spore germinatio. Fungal Genet Biol 41:317–326

    Article  CAS  PubMed  Google Scholar 

  • Boyce KJ, Hynes MJ, Andrianopoulos A (2001) The CDC42 homolog of the dimorphic fungus Penicillium marneffei is required for correct cell polarization during growth but not development. J Bacteriol 183:3447–3457

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boyce KJ, Hynes MJ, Andrianopoulos A (2003) Control of morphogenesis and actin localization by the Penicillium marneffei RAC homolog. J Cell Sci 116:1249–1260

    Article  CAS  PubMed  Google Scholar 

  • Bruder Nascimento ACMdO et al (2016) Mitogen activated protein kinases SakAHOG1 and MpkC collaborate for Aspergillus fumigatus. virulence. Mol Microbiol 100:841–859

    Article  PubMed  Google Scholar 

  • Cabib E, Roh DH, Schmidt M, Crotti LB, Varma A (2001) The yeast cell wall and septum as paradigms of cell growth and morphogenesis. J Biol Chem 276:19679

    Article  CAS  PubMed  Google Scholar 

  • Chant J, Stowers L (1995) GTPase cascades choreographing cellular behavior: movement, morphogenesis, and more. Cell 81:1

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Dickman MB (2004) Dominant active Rac and dominant negative Rac revert the dominant active Ras phenotype in Colletotrichum trifolii by distinct signalling pathways. Mol Microbiol 51:1493

    Article  CAS  PubMed  Google Scholar 

  • Chen RE, Thorner J (2007) Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae Biochimica et Biophysica Acta (BBA). Mol Cell Res 1773:1311–1340

    CAS  Google Scholar 

  • Chen C, Ha Y, Min J, Memmott SD, Dickman MB (2006) Cdc42 is required for proper growth and development in the fungal pathogen Colletotrichum trifolii. Eukaryot Cell 5:155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chi MH, Craven KD (2016) RacA-mediated ROS signaling is required for polarized cell differentiation in conidiogenesis of Aspergillus fumigatus. PLos One 11:e0149548

    Article  PubMed Central  PubMed  Google Scholar 

  • Chi MH, Park SY, Kim S, Lee YH (2009) A novel pathogenicity gene is required in the rice blast fungus to suppress the basal defenses of the host. PLos Pathogens 5:e1000401

    Article  PubMed Central  PubMed  Google Scholar 

  • Cross AR, Jones OT (1986) The effect of the inhibitor diphenylene iodonium on the superoxide-generating system of neutrophils. Specific labelling of a component polypeptide of the oxidase. Biochem J 237:111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Damveld RA, Arentshorst M, Franken A, Vankuyk PA, Klis FM, Ca VDH, Ram AF (2005) The Aspergillus niger MADS-box transcription factor RlmA is required for cell wall reinforcement in response to cell wall stress. Mol Microbiol 58:305

    Article  CAS  PubMed  Google Scholar 

  • Doehlemann G, Berndt P, Hahn M (2010) Different signalling pathways involving a Galpha protein, cAMP and a MAP kinase control germination of Botrytis cinerea conidia. Mol Microbiol 59:821–835

    Article  Google Scholar 

  • Doke N (1985) NADPH-dependent O2—generation in membrane fractions isolated from wounded potato tubers inoculated with Phytophthora infestans. Physiol Plant Pathol 27:311–322

    Article  CAS  Google Scholar 

  • Doyle J (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Egan MJ, Wang ZY, Jones MA, Smirnoff N, Talbot NJ (2007) Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease. Proc Natl Acad Sci USA 104:11772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ford RA, Shaw JA, Cabib E (1996) Yeast chitin synthases 1 and 2 consist of a non-homologous and dispensable N-terminal region and of a homologous moiety essential for function. Mol Gen Genet MGG 252:420

    Article  CAS  PubMed  Google Scholar 

  • Fuchs BB, Mylonakis E (2009) Our paths might cross: the role of the fungal cell wall integrity pathway in stress response and cross talk with other stress response pathways. Eukaryot Cell 8:1616–1625

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fujioka T et al (2007) MpkA-dependent and -independent cell wall integrity signaling in Aspergillus nidulans. Eukaryot Cell 6:1497–1510

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gong T, Liao Y, He F, Yang Y, Yang DD, Chen XD, Gao XD (2013) Control of polarized growth by the Rho family GTPase Rho4 in budding yeast: requirement of the N-terminal extension of Rho4 and regulation by the Rho GTPase-activating protein Bem2. Eukaryot Cell 12:368–377

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goswami RS (2012) Targeted gene replacement in fungi using a split-marker approach. Methods Mol Biol 835:255–269

    Article  Google Scholar 

  • Guest GM, Lin X, Momany M (2004) Aspergillus nidulans RhoA is involved in polar growth, branching, and cell wall synthesis. Fungal Genet Biol Fg B 41:13

    Article  CAS  PubMed  Google Scholar 

  • Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279:509

    Article  CAS  PubMed  Google Scholar 

  • Herrmann A, Tillmann BA, Schürmann J, Bölker M, Tudzynski P (2014) Small-GTPase-associated signaling by the guanine nucleotide exchange factors CpDock180 and CpCdc24, the GTPase effector CpSte20, and the scaffold protein CpBem1 in Claviceps purpurea. Eukaryot Cell 13:470

    Article  PubMed Central  PubMed  Google Scholar 

  • Huang K, Czymmek KJ, Caplan JL, Sweigard JA, Donofrio NM (2011) HYR1-mediated detoxification of reactive oxygen species is required for full virulence in the rice blast fungus. PLos Pathogens 7:e1001335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson DI (1999) Cdc42: an essential Rho-type GTPase controlling eukaryotic cell polarity. Microbiol Mol Biol Rev MMBR 63:54–105

    CAS  PubMed  Google Scholar 

  • Kayano Y, Tanaka A, Takemoto D (2018) Two closely related Rho GTPases, Cdc42 and RacA, of the en-dophytic fungus Epichloë festucae have contrasting roles for ROS production and symbiotic infection synchronized with the host plant. PLos Pathogens 14:e1006840. https://doi.org/10.1371/journal.ppat.1006840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Kleemann J, Takahara H, Stüber K, O’Connell R (2008) Identification of soluble secreted proteins from appressoria of Colletotrichum higginsianum by analysis of expressed sequence tags. Microbiology 154:1204–1217

    Article  CAS  PubMed  Google Scholar 

  • Kong LA et al (2012) Different chitin synthase genes are required for various developmental and plant infection processes in the rice blast fungus Magnaporthe oryzae. PLos Pathogens 8:e1002526

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kwon MJ, Arentshorst M, Roos ED, Ca VDH, Meyer V, Ram AF (2011) Functional characterization of Rho GTPases in Aspergillus niger uncovers conserved and diverged roles of Rho proteins within filamentous fungi. Mol Microbiol 79:1151

    Article  CAS  PubMed  Google Scholar 

  • Lagorce A et al (2003) Genome-wide analysis of the response to cell wall mutations in the yeast Saccharomyces cerevisiae. J Biol Chem 278:20345–20357

    Article  CAS  PubMed  Google Scholar 

  • Levin DE (2005) Cell Wall Integrity Signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 69:262–291

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Levin DE, Fields FO, Kunisawa R, Bishop JM, Thorner J (1990) A candidate protein kinase C gene, PKC1, is required for the S. cerevisiae cell cycle. Cell 62:213–224

    Article  CAS  PubMed  Google Scholar 

  • Liu W et al (2011) Multiple plant surface signals are sensed by different mechanisms in the rice blast fungus for appressorium Formation. PLos Pathogens 7:e1001261

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mahlert M, Leveleki L, Hlubek A, Sandrock B, Bolker M (2006) Rac1 and Cdc42 regulate hyphal growth and cytokinesis in the dimorphic fungus Ustilago maydis. Mol Microbiol 59:567–578

    Article  CAS  PubMed  Google Scholar 

  • Mendgen K, Hahn M, Deising H (1996) Morphogenesis and mechanisms of penetration by plant pathogenic fungi. Annu Rev Phytopathol 34:367–386

    Article  CAS  PubMed  Google Scholar 

  • Nesher I, Barhoom S, Sharon A (2008) Cell cycle and cell death are not necessary for appressorium formation and plant infection in the fungal plant pathogen Colletotrichum gloeosporioides. BMC Biol 6:1–11

    Article  Google Scholar 

  • Nesher I, Minz A, Kokkelink L, Tudzynski P, Sharon A (2011) Regulation of pathogenic spore germination by CgRac1 in the fungal plant pathogen Colletotrichum gloeosporioides. Eukaryot Cell 10:1122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oiartzabal-Arano E, Espeso EA, Etxebeste O (2016) Apical control of conidiation in Aspergillus nidulans. Curr Genet 62:371–377

    Article  CAS  PubMed  Google Scholar 

  • Park HO, Bi E (2007) Central roles of small GTPases in the development of cell polarity in yeast and beyond. Microbiol Mol Biol Rev 71:48–96

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Prusky D, Lichter A (2008) Mechanisms modulating fungal attack in post-harvest pathogen interactions and their control European. J Plant Pathol 121:281

    Article  Google Scholar 

  • Rolke Y, Tudzynski P (2010) The small GTPase Rac and the p21-activated kinase Cla4 in Claviceps purpurea: interaction and impact on polarity development pathogenicity. Mol Microbiol 68:405–423

    Article  Google Scholar 

  • Sánchezleón E, Verdín J, Freitag M, Roberson RW, Bartnickigarcia S, Riquelme M (2011) Traffic of chitin synthase 1 (CHS-1) to the Spitzenkörper and developing septa in hyphae of Neurospora crassa: actin dependence and evidence of distinct microvesicle populations. Eukaryot Cell 10:683

    Article  Google Scholar 

  • Sarto-Jackson I, Tomaska L (2016) How to bake a brain: yeast as a model neuron. Curr Genet 62:1–24

    Article  Google Scholar 

  • Scheffer J, Chen C, Heidrich P, Dickman MB, Tudzynski P (2005) A CDC42 homologue in Claviceps purpurea is involved in vegetative differentiation and is essential for pathogenicity. Eukaryot Cell 4:1228

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Segmüller N, Kokkelink L, Giesbert S, Odinius D, Van KJ, Tudzynski P (2008) NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea. Mol Plant-Microbe Interact 21:808–819

    Article  PubMed  Google Scholar 

  • Semighini CP, Harris SD (2008) Regulation of apical dominance in Aspergillus nidulans hyphae by reactive oxygen. Species Genet 179:1919–1932. https://doi.org/10.1534/genetics.108.089318

    Article  CAS  Google Scholar 

  • Shinogi T, Suzuki T, Kurihara T, Narusaka Y, Park P (2003) Microscopic detection of reactive oxygen species generation in the compatible and incompatible interactions of Alternaria alternata Japanese pear pathotype and host plants. J Gen Plant Pathol 69:7–16

    Article  CAS  Google Scholar 

  • Smits GJ, Kapteyn JC, Ende HVD, Klis FM (1999) Cell wall dynamics in yeast. Curr Opin Microbiol 2:348

    Article  CAS  PubMed  Google Scholar 

  • Sudbery PE (2008) Regulation of polarised growth in fungi. Fungal Biol Rev 22:44–55

    Article  Google Scholar 

  • Suharsono U, Fujisawa Y, Kawasaki T, Iwasaki Y, Satoh H, Shimamoto K (2002) The heterotrimeric G protein alpha subunit acts upstream of the small GTPase Rac in disease resistance of rice. Proc Natl Acad Sci USA 99:13307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun Y, Wang Y, Tian C (2016) bZIP transcription factor CgAP1 is essential for oxidative stress tolerance and full virulence of the poplar anthracnose fungus Colletotrichum gloeosporioides. Fungal Genet Biol 95:58–66

    Article  CAS  PubMed  Google Scholar 

  • Takemoto D et al (2011) Polarity proteins Bem1 and Cdc24 are components of the filamentous fungal NADPH oxidase complex. Proc Natl Acad Sci USA 108:2861–2866. https://doi.org/10.1073/pnas.1017309108

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanabe S, Nishizawa Y, Minami E (2009) Effects of catalase on the accumulation of H2O2 in rice cells inoculated with rice blast fungus, Magnaporthe oryzae. Physiol Plant 137:148

    Article  CAS  PubMed  Google Scholar 

  • Tanaka N, Che FS, Watanabe N, Fujiwara S, Takayama S, Isogai A (2003) Flagellin from an incompatible strain of Acidovorax avenae mediates H2O2 generation accompanying hypersensitive cell death and expression of PAL, Cht-1, and PBZ1, but not of Lox in rice. Mol Plant Microbe Interact 16:422

    Article  CAS  PubMed  Google Scholar 

  • Tanaka A, Christensen M, Takemoto D, Park P, Scott B (2006) Reactive oxygen species play a role in regulating a fungus-perennial ryegrass mutualistic interaction. Plant Cell 18:1052–1066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tanaka A, Takemoto D, Hyon GS, Park P, Scott B (2008) NoxA activation by the small GTPase RacA is required to maintain a mutualistic symbiotic association between Epichloë festucae and perennial ryegrass. Mol Microbiol 68:1165–1178

    Article  CAS  PubMed  Google Scholar 

  • Terashita T (1973) Studies of an anthracnose fungus on broad-leaved trees in Japan, with special reference to the latency of the fungus. Bull Gov For Exp Sta 252:1–85

    Google Scholar 

  • Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279:L1005

    Article  CAS  PubMed  Google Scholar 

  • Torres MA, Jones JD, Dangl JL (2005) Pathogen-induced, NADPH oxidase-derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana. Nat Genet 37:1130

    Article  CAS  PubMed  Google Scholar 

  • Valiante V, Heinekamp T, Jain R, Härtl A, Brakhage AA (2008) The mitogen-activated protein kinase MpkA of Aspergillus fumigatus regulates cell wall signaling and oxidative stress response. Fungal Genet Biol 45:618–627

    Article  CAS  PubMed  Google Scholar 

  • Vanstreels E et al (2005) Micromechanical behaviour of onion epidermal tissue. Postharvest Biol Technol 37:163–173

    Article  Google Scholar 

  • Virag A, Lee MP, Si H, Harris SD (2007) Regulation of hyphal morphogenesis by cdc42 and rac1 homologues in Aspergillus nidulans. Mol Microbiol 66:1579–1596

    CAS  PubMed  Google Scholar 

  • Wang ZY, Jenkinson JM, Holcombe LJ, Soanes DM, Veneault-Fourrey C, Bhambra GK, Talbot NJ (2005) The molecular biology of appressorium turgor generation by the rice blast fungus Magnaporthe grisea. Biochem Soc Trans 33:384–388

    Article  CAS  PubMed  Google Scholar 

  • Wendland J, Philippsen P (2001) Cell polarity and hyphal morphogenesis are controlled by multiple rho-protein modules in the filamentous ascomycete Ashbya gossypii. Genetics 157:601

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wendland J, Pöhlmann R, Dietrich F, Steiner S, Mohr C, Philippsen P (1999) Compact organization of rRNA genes in the filamentous fungus Ashbya gossypii. Curr Genet 35:618–625

    Article  CAS  PubMed  Google Scholar 

  • Wennerberg K, Rossman KL, Der CJ (2005) The Ras superfamily at a glance. J Cell Sci 118:843–846

    Article  CAS  PubMed  Google Scholar 

  • Xu JR, Staiger CJ, Hamer JE (1998) Inactivation of the mitogen-activated protein kinase Mps1 from the rice blast fungus prevents penetration of host cells but allows activation of plant defense responses. Proc Natl Acad Sci USA 95:12713

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu X, Wang Y, Tian C, Liang Y (2016) The Colletotrichum gloeosporioides RhoB regulates cAMP and stress response pathways and is required for pathogenesis. Fungal Genet Biol 96:12

    Article  CAS  PubMed  Google Scholar 

  • Yong HY, Bakar FD, Illias RM, Mahadi NM, Murad AM (2014) Cgl-SLT2 is required for appressorium formation, sporulation and pathogenicity in Colletotrichum gloeosporioide. Braz J Microbiol 44:1241–1250

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang N, Liu ZQ, Man-Li WU, Xiao-Yu LI (2017) Gene cloning and functional analysis of CgSho1 in Colletotrichum gloeosporioides. Acta Phytopathol Sin (1):40–49

  • Zohn IM, Campbell SL, Khosravi-Far R, Rossman KL, Der CJ (1998) Rho family proteins and Ras transformation: the RHOad less traveled gets congested. Oncogene 17:1415

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the excellent technical support by YONGLIN WANG and XIN XU, We are grateful to YINGMEI LIANG for her help with some supplemental experiments and linguistic support, we further thank LONGYAN TIAN, PUHUIZHONG HE and XIAOLIN ZHANG for their helpful advice. The research was supported by National Natural Science Foundation of China (31470647), Research Fund for the Doctoral Program of Higher Education of China (20130014110004), and Project of Universities in Beijing Supported by Beijing Government (2050205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengming Tian.

Additional information

Communicated by M. Kupiec.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

. Sequence analysis of CgCdc42 and its homologs from other fungi. a Amino acid sequences of CgCdc42 in C. gloeosporioides and Cdc42 homologs in other fungi were aligned by ClustalX 2.1. Red frame indicate the main effector domain. b Phylogenetic tree of CgCdc42 and its homologs in U. maydis (AAM73880), C. trifolii (AAK31624), M. grisea (AAF73431), S. cerevisiae (KZV09474), A. niger (CAK48851), Glomerella cingulata (AAD00177), and A. gossypii (NP_986573.1). The phylogenetic tree was constructed by MEGA 7.0 with full-length protein sequences and neighbor-joining with 1000 bootstrap replicates. (PPTX 1684 KB)

Fig. S2

. Generation of the CgCdc42 deletion mutants in C. gloeosporioides. The split-marker method was used for the replacement of CgCdc42. A hygromycin cassette (1.4 kb) replaced the fragment of CgCdc42 (1.1 kb). Screening of ΔCgCdc42 mutants with a the primers External-CgCdc42for/External-CgCdc42rev and b the primers Internal-CgCdc42for/Internal- CgCdc42rev. c Southern blot of the wild type strain and three independent ΔCgCdc42 mutants (ΔCgCdc42-51, ΔCgCdc42-92, and ΔCgCdc42-11) in C. gloeosporioides. A 500 bp fragment was amplified from the 5′ flanking sequence of CgCdc42 and used as probe to confirm the deletion of CgCdc42. DNA samples were digested with BamHI. Hybridization revealed a 4.3 kb fragment in the wild type and a 3.4 kb fragment in mutants. d Complementation of CgCdc42 and confirmation of ΔCgCdc42 mutants using PCR. (PPTX 945 KB)

Fig. S3

. The unicellular conidium divides and one of the two cells develops a germ tube before the formation of the appressorium in C. gloeosporioides. Conidia inoculated on onion epidermis (5 hpi) from four strains were stained with CFW for 1 min in dark, the letter S indicates a septum between two cells of the conidia. Bar = 10 μm. (PPTX 2627 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Xu, X., Liang, Y. et al. A Cdc42 homolog in Colletotrichum gloeosporioides regulates morphological development and is required for ROS-mediated plant infection. Curr Genet 64, 1153–1169 (2018). https://doi.org/10.1007/s00294-018-0833-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-018-0833-9

Keywords

Navigation