Skip to main content
Log in

The influence of mitochondrial dynamics on mitochondrial genome stability

  • Original Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Mitochondria are dynamic organelles that fuse and divide. These changes alter the number and distribution of mitochondrial structures throughout the cell in response to developmental and metabolic cues. We have demonstrated that mitochondrial fission is essential to the maintenance of mitochondrial DNA (mtDNA) under changing metabolic conditions in wild-type Saccharomyces cerevisiae. While increased loss of mtDNA integrity has been demonstrated for dnm1-∆ fission mutants after growth in a non-fermentable carbon source, we demonstrate that growth of yeast in different carbon sources affects the frequency of mtDNA loss, even when the carbon sources are fermentable. In addition, we demonstrate that the impact of fission on mtDNA maintenance during growth in different carbon sources is neither mediated by retrograde signaling nor mitophagy. Instead, we demonstrate that mitochondrial distribution and mtDNA maintenance phenotypes conferred by loss of Dnm1p are suppressed by the loss of Sod2p, the mitochondrial matrix superoxide dismutase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abeliovich H, Zarei M, Rigbolt KT, Youle RJ, Dengjel J (2013) Involvement of mitochondrial dynamics in the segregation of mitochondrial matrix proteins during stationary phase mitophagy. Nat Commun 4:2789

    Article  PubMed  PubMed Central  Google Scholar 

  • Archer SL (2013) Mitochondrial dynamics—mitochondrial fission and fusion in human disease. N Engl J Med 369:2236–2251

    Article  CAS  PubMed  Google Scholar 

  • Bianchi NO, Bianchi MS, Richard SM (2001) Mitochondrial genome instability in human cancers. Mutat Res 488:9–23

    Article  CAS  PubMed  Google Scholar 

  • Bleazard W, McCaffery JM, King EJ, Bale S, Mozy A et al (1999) The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast. Nat Cell Biol 1:298–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox RT, Spradling AC (2009) clueless, a conserved Drosophila gene required for mitochondrial subcellular localization, interacts genetically with parkin. Dis Model Mech 9–10:490–499

    Article  Google Scholar 

  • Defontaine A, Lecocq FM, Hallet JN (1991) A rapid miniprep method for the preparation of yeast mitochondrial DNA. Nucleic Acids Res 19:185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dengjel J, Abeliovich H (2017) Roles of mitophagy in cellular physiology and development. Cell Tissue Res 367:95–109

    Article  CAS  PubMed  Google Scholar 

  • Dimmer KS, Fritz S, Fuchs F, Messerschmitt M, Weinback N et al (2002) Genetic basis of mitochondrial function and morphology in Saccharomyces cerevisiae. Mol Biol Cell 13:847–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimmer KS, Jakobs S, Vogel F, Altmann K, Westermann B (2005) Mdm31 and Mdm32 are inner membrane proteins required for maintenance of mitochondrial shape and stability of mitochondrial DNA nucleoids in yeast. J Cell Biol 168:103–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doudican NA, Song B, Shadel GS, Doetsch PW (2005) Oxidative DNA damage causes mitochondrial genomic instability in Saccharomyces cerevisiae. Mol Cell Biol 25:5196–5204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dujon B (1981) Mitochondrial genetics and functions. In: Strathern JN, Jones EW, Broach JR (eds) Molecular biology of the yeast Saccharomyces: life cycle and inheritance. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 505–635

    Google Scholar 

  • Dunn B, Wobbe CR (2001) Preparation of protein extracts from yeast. Curr Protoc Mol Biol. doi:10.1002/0471142727.mb1313s23

  • Epstein CB, Waddle JA, Hale WT, Dave V, Thornton J et al (2001) Genome-wide responses to mitochondrial dysfunction. Mol Biol Cell 12:297–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fendt SM, Sauer U (2010) Transcriptional regulation of respiration in yeast metabolizing differently repressive carbon substrates. BMC Syst Biol 4:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Fields SD, Conrad MN, Clarke M (1998) The S. cerevisiae CLU1 and D. discoideum, cluA genes are functional homologues that influence mitochondrial morphology and distribution. J Cell Sci 111:1717–1727

    CAS  PubMed  Google Scholar 

  • Fields SD, Arana Q, Heuser J, Clark M (2002) Mitochondrial membrane dynamics are altered in cluA- mutants of Dictyostelium. J Muscle Res Cell Motil 23:829–838

    Article  CAS  PubMed  Google Scholar 

  • Friedman JR, Mourier A, Yamada J, McCaffery JM, Nunnari J (2015) MICOS coordinates with respiratory complexes and lipids to establish mitochondrial inner membrane architecture. Elife. doi:10.7554/eLife.07739

  • Guaragnella N, Zdralevic M, Lattanzio P, Marzulli D, Pracheil T et al (2013) Yeast growth in raffinose results in resistance to acetic-acid induced programmed cell death mostly due to the activation of the mitochondrial retrograde pathway. Biochem Biophys Acta 1833:2765–2774

    Article  CAS  PubMed  Google Scholar 

  • Hanekamp T, Thorsness MK, Rebbapragada I, Fishe EM, Seebart C et al (2002) Maintenance of mitochondrial morphology is linked to maintenance of the mitochondrial genome in Saccharomyces cerevisiae. Genetics 162:1147–1156

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hermann GJ, Thatcher JW, Mills JP, Hales KG, Fuller MT et al (1998) Mitochondrial fusion in yeast requires the transmembrane GTPase Fzo1p. J Cell Biol 143:359–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishihara T, Ban-Ishihara R, Maeda M, Matusnaga Y, Ichimura A et al (2015) Dynamics of mitochondrial DNA nucleoids regulated by mitochondrial fission is essential for maintenance of homogeneously active mitochondria during neonatal heart development. Mol Cell Biol 35:211–223

    Article  PubMed  Google Scholar 

  • Kajander O, Karhunen PJ, Jacobs HT (2002) The relationship between somatic mtDNA rearrangements, human heart disease and aging. Hum Mol Genet 11:317–324

    Article  CAS  PubMed  Google Scholar 

  • Kalifa L, Beutner G, Phadnis N, Sheu SS, Sia EA (2009) Evidence for a role of FEN1 in maintaining mitochondrial DNA integrity. DNA Repair (Amst) 8:1242–1249

    Article  CAS  Google Scholar 

  • Kanki T, Wang K, Baba M, Bartholomew CR, Lynch-Day MA et al (2009a) A genomic screen for yeast mutants defective in selective mitochondrial autophagy. Mol Biol Cell 20:4730–4738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanki T, Wang K, Cao Y, Baba M, Klionsky DJ (2009b) Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev Cell 17:98–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanki T, Furukawa K, Yamashita S (2015) Mitophagy in yeast: molecular mechanisms and physiological role. Biochim Biophys Acta 1853:2756–2765

    Article  CAS  PubMed  Google Scholar 

  • Lang A, Peter ATJ, Kornmann B (2015) ER-mitochondria contact sites in yeast: beyond the myth of ERMES. Curr Opin Cell Biol 35:7–12

    Article  CAS  PubMed  Google Scholar 

  • Lea DE, Coulson CA (1949) The distribution of the numbers of mutants in bacterial populations. J Genet 49:264–285

    Article  CAS  PubMed  Google Scholar 

  • Liao X, Butow RA (1993) RTG1 and RTG2: two yeast genes required for a novel path of communication from mitochondria to the nucleus. Cell 72:61–71

    Article  CAS  PubMed  Google Scholar 

  • Liesa M, Palacin M, Zorzano A (2009) Mitochondrial dynamics in health and disease. Physiol Rev 89:799–845

    Article  CAS  PubMed  Google Scholar 

  • Logan DC, Scott I, Tobin AK (2003) The genetic control of plant mitochondrial morphology and dynamics. Plant J 36:500–509

    Article  CAS  PubMed  Google Scholar 

  • Miyakawa I, Nobundo S, Shigeyuki K, Soichi N, Tsuneyoshi K (1987) Isolation of morphologically intact mitochondrial nucleoids from the yeast, Saccharomyces cerevisiae. J. Cell Sci 88:431–439

    CAS  PubMed  Google Scholar 

  • Miyakawa I, Fumoto S, Kuroiwa T, Sando N (1995) Characterization of DNA-binding proteins involved in the assembly of mitochondrial nucleoids from the yeast, Saccharomyces cerevisiae. Plant Cell Physiol 36:1179–1188

    CAS  PubMed  Google Scholar 

  • Muller M, Lu K, Reichert AS (2015) Mitophagy and mitochondrial dynamics in Saccharomyces cerevisiae. Biochim Biophys Acta 1853:2766–2774

    Article  PubMed  Google Scholar 

  • Murley A, Lackner LL, Osman C, West M, Voeltz GK et al (2013) ER-associated mitochondrial division links the distribution of mitochondria and mitochondrial DNA in yeast. eLife 2:e00422

    Article  PubMed  PubMed Central  Google Scholar 

  • Newman SM, Zelenaya-Troitskaya O, Perlman PS, Butow RA (1996) Analysis of mitochondrial DNA nucleoids in wild-type and a mutant strain of Saccharomyces cerevisiae that lacks the mitochondrial HMG-box protein Abf2p. Nucleic Acids Res 24:386–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nunnari J, Suomalainen A (2012) Mitochondria: in sickness and in health. Cell 748:1145–1159

    Article  Google Scholar 

  • Odoardi F, Rana M, Broccolini A, Mirabella M, Modoni A et al (2003) Pathogenic role of mtDNA duplications in mitochondrial diseases associated with mtDNA deletions. Am J Med Genet 118A:247–254

    Article  PubMed  Google Scholar 

  • Okamoto K, Kondo-Okamoto N, Ohsumi Y (2009) A landmark protein essential for mitophagy: Atg32 recruits the autophagic machinery to mitochondria. Autophagy 5:1203–1205

    Article  CAS  PubMed  Google Scholar 

  • Osman C, Noriega TR, Okreglak V, Fung JC, Walter P (2015) Integrity of the yeast mitocondrial genome, but not its distribution and inheritance, relies on mitochondrial fission and fusion. Proc Natl Acad Sci USA 112:E947–E956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otsuga D, Keegan BR, Brisch E, Thatcher JW, Hermann GJ et al (1998) The dynamin-related GTPase, Dnm1p, controls mitochondrial morphology in yeast. J Cell Biol 143:333–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phadnis N, Sia RA, Sia EA (2005) Analysis of repeat-mediated deletions in the mitochondrial genome of Saccharomyces cerevisiae. Genetics 171:1549–1559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rampelt H, Zerbes RM, van der Laan M, Pfanner N (2017) Role of the mitochondrial contact site and cristae organizing system in membrane architecture and dynamics. Biochim Biophys Acta 1864:737–746

    Article  CAS  PubMed  Google Scholar 

  • Shintani T, Huang WP, Stromhaug PE, Klionsky DJ (2002) Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway. Dev Cell 3:825–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shoubridge EA (2001) Nuclear genetic defects of oxidative phosphorylation. Hum Mol Genet 10:2277–2284

    Article  CAS  PubMed  Google Scholar 

  • Sia EA, Butler CA, Dominska M, Greenwell P, Fox TD et al (2000) Analysis of microsatellite mutations in the mitochondrial DNA of Saccharomyces cerevisae. Proc Natl Acad Sci USA 97:250–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solans A, Zambrano A, Rodriguez M, Barrientos A (2006) Cytotoxicity of a mutant huntingtin fragment in yeast involves early alterations in mitochondrial OXPHOS complexes II and III. Hum Mol Genet 15:3063–3081

    Article  CAS  PubMed  Google Scholar 

  • Sor F, Fukuhara H (1982) Identification of two erythromycin resistance mutations in the mitochondrial gene coding for the large ribosomal RNA in yeast. Nucleic Acids Res 10:6571–6577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steele DF, Butler CA, Fox TD (1996) Expression of a recoded nuclear gene inserted into yeast mitochondrial DNA is limited by mRNA-specific translational activation. Proc Natl Acad Sci USA 93:5253–5257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stein A, Kalifa L, Sia EA (2015) Members of the RAD52 epistasis group contribute to mitochondrial homologous recombination and double-strand break repair in Saccharomyces cerevisiae. PLoS Genet 11:e1005664

    Article  PubMed  PubMed Central  Google Scholar 

  • Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT et al (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429:417–421

    Article  CAS  PubMed  Google Scholar 

  • Vornlocher HP, Hanachi P, Ribeiro S, Hershey JWB (1999) A 110-Kilodalton subunit of translation initiation factor eIF3 and an associated 135-kilodalton protein are encoded by the Saccharomyces cerevisiae TIF32 and TIF31 genes. J Biol Chem 274:16802–16812

    Article  CAS  PubMed  Google Scholar 

  • Wagener J (2016) Regulation of mitochondrial inner membrane fusion: divergent evolution with similar solutions? Curr Genet 62:291–294

    Article  CAS  PubMed  Google Scholar 

  • Wai T, Langer T (2016) Mitochondrial dynamics and metabolic regulation. Trends Endocrin Metab 27:105–117

    Article  CAS  Google Scholar 

  • Williamson DH (1976) Packaging and recombination of mitochondrial DNA in vegetatively growing cells. In: Bandlow W, Schweyen RJ, Thomas DY, Wolf TK, Kaudewitz F (eds) Genetics, biogenesis and bioenergetics of mitochondria. Walter de Gruyter, Berlin, pp 99–115

    Google Scholar 

  • Zeviani M, Spinazzola A, Carelli V (2003) Nuclear genes in mitochondrial disorders. Curr Opin Genet Dev 13:262–270

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Lendahl U, Nister M (2013) Regulation of mitochondrial dynamics: convergences and divergences between yeast and vertebrates. Cell Mol Life Sci 70:951–976

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q, Hulen D, Liu T, Clarke M (1997) The cluA-mutant of Dictyostelium identifies a novel class of proteins required for dispersion of mitochondria. Proc Natl Acad Sci 94:7308–7313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

E.A.S and R.A.S research was supported by National Science Foundation Grants, MCB0841857 and MCB1243428. E.A.S. and C.T.P. received additional support from University of Rochester Pump Primer Grant, OP212588.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elaine A. Sia or Rey A. L. Sia.

Additional information

Communicated by M. Kupiec.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 12366 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prevost, C.T., Peris, N., Seger, C. et al. The influence of mitochondrial dynamics on mitochondrial genome stability. Curr Genet 64, 199–214 (2018). https://doi.org/10.1007/s00294-017-0717-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-017-0717-4

Keywords

Navigation