Skip to main content
Log in

Target of rapamycin signaling mediates vacuolar fragmentation

  • Review
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

In eukaryotic cells, cellular homeostasis requires that different organelles respond to intracellular as well as environmental signals and modulate their behavior as conditions demand. Understanding the molecular mechanisms required for these changes remains an outstanding goal. One such organelle is the lysosome/vacuole, which undergoes alterations in size and number in response to environmental and physiological stimuli. Changes in the morphology of this organelle are mediated in part by the equilibrium between fusion and fission processes. While the fusion of the yeast vacuole has been studied intensively, the regulation of vacuolar fission remains poorly characterized by comparison. In recent years, a number of studies have incorporated genome-wide visual screens and high-throughput microscopy to identify factors required for vacuolar fission in response to diverse cellular insults, including hyperosmotic and endoplasmic reticulum stress. Available evidence now demonstrates that the rapamycin-sensitive TOR network, a master regulator of cell growth, is required for vacuolar fragmentation in response to stress. Importantly, many of the genes identified in these studies provide new insights into potential links between the vacuolar fission machinery and TOR signaling. Together these advances both extend our understanding of the regulation of vacuolar fragmentation in yeast as well as underscore the role of analogous events in mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aronova S, Wedaman K, Anderson S, Yates J 3rd, Powers T (2007) Probing the membrane environment of the TOR kinases reveals functional interactions between TORC1, actin, and membrane trafficking in Saccharomyces cerevisiae. Mol Biol Cell 18:2779–2794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baars TL, Petri S, Peters C, Mayer A (2007) Role of the V-ATPase in regulation of the vacuolar fission–fusion equilibrium. Mol Biol Cell 18:3873–3882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baba M, Takeshige K, Baba N, Ohsumi Y (1994) Ultrastructural analysis of the autophagic process in yeast: detection of autophagosomes and their characterization. J Cell Biol 124:903–913

    Article  CAS  PubMed  Google Scholar 

  • Bachhawat AK, Manolson MF, Murdock DG, Garman JD, Jones EW (1993) The VPH2 gene encodes a 25 kDa protein required for activity of the yeast vacuolar H(+)-ATPase. Yeast 9:175–184

    Article  CAS  PubMed  Google Scholar 

  • Balderhaar HJ, Lachmann J, Yavavli E, Brocker C, Lurick A, Ungermann C (2013) The CORVET complex promotes tethering and fusion of Rab5/Vps21-positive membranes. Proc Natl Acad Sci USA 110:3823–3828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banta LM, Robinson JS, Klionsky DJ, Emr SD (1988) Organelle assembly in yeast: characterization of yeast mutants defective in vacuolar biogenesis and protein sorting. J Cell Biol 107:1369–1383

    Article  CAS  PubMed  Google Scholar 

  • Barbet NC, Schneider U, Helliwell SB, Stansfield I, Tuite MF, Hall MN (1996) TOR controls translation initiation and early G1 progression in yeast. Mol Biol Cell 7:25–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Betz C, Hall MN (2013) Where is mTOR and what is it doing there? J Cell Biol 203:563–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binda M, Peli-Gulli MP, Bonfils G, Panchaud N, Urban J, Sturgill TW, Loewith R, De Virgilio C (2009) The Vam6 GEF controls TORC1 by activating the EGO complex. Mol Cell 35:563–573

    Article  CAS  PubMed  Google Scholar 

  • Bonangelino CJ, Nau JJ, Duex JE, Brinkman M, Wurmser AE, Gary JD, Emr SD, Weisman LS (2002) Osmotic stress-induced increase of phosphatidylinositol 3,5-bisphosphate requires Vac14p, an activator of the lipid kinase Fab1p. J Cell Biol 156:1015–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bridges D, Fisher K, Zolov SN, Xiong T, Inoki K, Weisman LS, Saltiel AR (2012a) Rab5 proteins regulate activation and localization of target of rapamycin complex 1. J Biol Chem 287:20913–20921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bridges D, Ma JT, Park S, Inoki K, Weisman LS, Saltiel AR (2012b) Phosphatidylinositol 3,5-bisphosphate plays a role in the activation and subcellular localization of mechanistic target of rapamycin 1. Mol Biol Cell 23:2955–2962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coonrod EM, Graham LA, Carpp LN, Carr TM, Stirrat L, Bowers K, Bryant NJ, Stevens TH (2013) Homotypic vacuole fusion in yeast requires organelle acidification and not the V-ATPase membrane domain. Dev Cell 27:462–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao M, Kaiser CA (2006) A conserved GTPase-containing complex is required for intracellular sorting of the general amino-acid permease in yeast. Nat Cell Biol 8:657–667

    Article  CAS  PubMed  Google Scholar 

  • Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, Dow S, Lucau-Danila A, Anderson K, Andre B et al (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391

    Article  CAS  PubMed  Google Scholar 

  • Gomes de Mesquita DS, van den Hazel HB, Bouwman J, Woldringh CL (1996) Characterization of new vacuolar segregation mutants, isolated by screening for loss of proteinase B self-activation. Eur J Cell Biol 71:237–247

    CAS  PubMed  Google Scholar 

  • Ho YH, Gasch AP (2015) Exploiting the yeast stress-activated signaling network to inform on stress biology and disease signaling. Curr Genet 61:503–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huber A, Bodenmiller B, Uotila A, Stahl M, Wanka S, Gerrits B, Aebersold R, Loewith R (2009) Characterization of the rapamycin-sensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis. Genes Dev 23:1929–1943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y (2016) Regulation of TORC1 by ubiquitin through non-covalent binding. Curr Genet. doi:10.1007/s00294-016-0581-7

    Google Scholar 

  • Jin N, Mao K, Jin Y, Tevzadze G, Kauffman EJ, Park S, Bridges D, Loewith R, Saltiel AR, Klionsky DJ et al (2014) Roles for PI(3,5)P2 in nutrient sensing through TORC1. Mol Biol Cell 25:1171–1185

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim A, Cunningham KW (2015) A LAPF/phafin1-like protein regulates TORC1 and lysosomal membrane permeabilization in response to endoplasmic reticulum membrane stress. Mol Biol Cell 26:4631–4645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H, Kim A, Cunningham KW (2012) Vacuolar H+-ATPase (V-ATPase) promotes vacuolar membrane permeabilization and nonapoptotic death in stressed yeast. J Biol Chem 287:19029–19039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kingsbury JM, Sen ND, Maeda T, Heitman J, Cardenas ME (2014) Endolysosomal membrane trafficking complexes drive nutrient-dependent TORC1 signaling to control cell growth in Saccharomyces cerevisiae. Genetics 196:1077–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkegaard T, Jaattela M (2009) Lysosomal involvement in cell death and cancer. Biochim Biophys Acta 1793:746–754

    Article  CAS  PubMed  Google Scholar 

  • Kuranda K, Leberre V, Sokol S, Palamarczyk G, Francois J (2006) Investigating the caffeine effects in the yeast Saccharomyces cerevisiae brings new insights into the connection between TOR, PKC and Ras/cAMP signalling pathways. Mol Microbiol 61:1147–1166

    Article  CAS  PubMed  Google Scholar 

  • Li SC, Kane PM (2009) The yeast lysosome-like vacuole: endpoint and crossroads. Biochim Biophys Acta 1793:650–663

    Article  CAS  PubMed  Google Scholar 

  • Li SC, Diakov TT, Xu T, Tarsio M, Zhu W, Couoh-Cardel S, Weisman LS, Kane PM (2014) The signaling lipid PI(3,5)P(2) stabilizes V(1)-V(o) sector interactions and activates the V-ATPase. Mol Biol Cell 25:1251–1262

    Article  PubMed  PubMed Central  Google Scholar 

  • Loewith R, Hall MN (2011) Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 189:1177–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luzio JP, Pryor PR, Bright NA (2007) Lysosomes: fusion and function. Nat Rev Mol Cell Biol 8:622–632

    Article  CAS  PubMed  Google Scholar 

  • Michaillat L, Mayer A (2013) Identification of genes affecting vacuole membrane fragmentation in Saccharomyces cerevisiae. PLoS One 8:e54160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michaillat L, Baars TL, Mayer A (2012) Cell-free reconstitution of vacuole membrane fragmentation reveals regulation of vacuole size and number by TORC1. Mol Biol Cell 23:881–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murley A, Sarsam RD, Toulmay A, Yamada J, Prinz WA, Nunnari J (2015) Ltc1 is an ER-localized sterol transporter and a component of ER-mitochondria and ER-vacuole contacts. J Cell Biol 209(4):539–548. doi:10.1083/jcb.201502033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamura K, Kimata Y, Higashio H, Tsuru A, Kohno K (2000) Dissociation of Kar2p/BiP from an ER sensory molecule, Ire1p, triggers the unfolded protein response in yeast. Biochem Biophys Res Commun 279:445–450

    Article  CAS  PubMed  Google Scholar 

  • Powers T, Walter P (1999) Regulation of ribosome biogenesis by the rapamycin-sensitive TOR-signaling pathway in Saccharomyces cerevisiae. Mol Biol Cell 10:987–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powis K, Zhang T, Panchaud N, Wang R, Virgilio CD, Ding J (2015) Crystal structure of the Ego1-Ego2-Ego3 complex and its role in promoting Rag GTPase-dependent TORC1 signaling. Cell Res 25:1043–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinke A, Anderson S, McCaffery JM, Yates J 3rd, Aronova S, Chu S, Fairclough S, Iverson C, Wedaman KP, Powers T (2004) TOR complex 1 includes a novel component, Tco89p (YPL180w), and cooperates with Ssd1p to maintain cellular integrity in Saccharomyces cerevisiae. J Biol Chem 279:14752–14762

    Article  CAS  PubMed  Google Scholar 

  • Reinke A, Chen JC, Aronova S, Powers T (2006) Caffeine targets TOR complex I and provides evidence for a regulatory link between the FRB and kinase domains of Tor1p. J Biol Chem 281:31616–31626

    Article  CAS  PubMed  Google Scholar 

  • Roberts P, Moshitch-Moshkovitz S, Kvam E, O’Toole E, Winey M, Goldfarb DS (2003) Piecemeal microautophagy of nucleus in Saccharomyces cerevisiae. Mol Biol Cell 14:129–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM (2010) Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141:290–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw JM, Wickner WT (1991) vac2: a yeast mutant which distinguishes vacuole segregation from Golgi-to-vacuole protein targeting. EMBO J 10:1741–1748

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sidrauski C, Walter P (1997) The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell 90:1031–1039

    Article  CAS  PubMed  Google Scholar 

  • Stauffer B, Powers T (2015) Target of rapamycin signaling mediates vacuolar fission caused by endoplasmic reticulum stress in Saccharomyces cerevisiae. Mol Biol Cell 26:4618–4630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sturgill TW, Cohen A, Diefenbacher M, Trautwein M, Martin DE, Hall MN (2008) TOR1 and TOR2 have distinct locations in live cells. Eukaryot Cell 7:1819–1830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki T, Sugiyama M, Wakazono K, Kaneko Y, Harashima S (2012) Lactic-acid stress causes vacuolar fragmentation and impairs intracellular amino-acid homeostasis in Saccharomyces cerevisiae. J Biosci Bioeng 113:421–430

    Article  CAS  PubMed  Google Scholar 

  • Takahara T, Maeda T (2012) Transient sequestration of TORC1 into stress granules during heat stress. Mol Cell 47:242–252

    Article  CAS  PubMed  Google Scholar 

  • Urban J, Soulard A, Huber A, Lippman S, Mukhopadhyay D, Deloche O, Wanke V, Anrather D, Ammerer G, Riezman H et al (2007) Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol Cell 26:663–674

    Article  CAS  PubMed  Google Scholar 

  • Wang YX, Zhao H, Harding TM, Gomes de Mesquita DS, Woldringh CL, Klionsky DJ, Munn AL, Weisman LS (1996) Multiple classes of yeast mutants are defective in vacuole partitioning yet target vacuole proteins correctly. Mol Biol Cell 7:1375–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weisman LS (2003) Yeast vacuole inheritance and dynamics. Annu Rev Genet 37:435–460

    Article  CAS  PubMed  Google Scholar 

  • Weisman LS, Emr SD, Wickner WT (1990) Mutants of Saccharomyces cerevisiae that block intervacuole vesicular traffic and vacuole division and segregation. Proc Natl Acad Sci USA 87:1076–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Sheng R, Qin Z (2009) The lysosome and neurodegenerative diseases. Acta Biochim Biophys Sin (Shanghai) 41:437–445

    Article  CAS  Google Scholar 

  • Zieger M, Mayer A (2012) Yeast vacuoles fragment in an asymmetrical two-phase process with distinct protein requirements. Mol Biol Cell 23:3438–3449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM (2011) mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 334:678–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health Grant GM086387 to Ted Powers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ted Powers.

Additional information

Communicated by M. Kupiec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stauffer, B., Powers, T. Target of rapamycin signaling mediates vacuolar fragmentation. Curr Genet 63, 35–42 (2017). https://doi.org/10.1007/s00294-016-0616-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-016-0616-0

Keywords

Navigation