Skip to main content
Log in

Reprogramming of nonfermentative metabolism by stress-responsive transcription factors in the yeast Saccharomyces cerevisiae

  • Review
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The fundamental questions of how cells control growth and respond to stresses have captivated scientists for years. Despite the complexity of these cellular processes, we could approach this puzzle by asking our favorite model yeast, Saccharomyces cerevisiae, how it makes a critical decision to either proliferate, to rest in a quiescent state or to program itself to die. This review highlights the essentiality of transcriptional factors in the reprogramming of gene expression as a prime mechanism of cellular stress responses. A whelm of evidence shows that transcriptional factors allow cells to acquire appropriate and unified responses to the transmitted signals. They function to modulate pathway-specific gene expression and organize transcriptomic responses to the altered environments. This review is aimed to summarize current knowledge on the roles of novel and well-known yeast transcription factors in the control of growth and stress responses during glucose deprivation as a prototypical case study. The scope includes stress sensing, transcription factors’ identity, gene regulation and proposed crosstalks between pathways, associated with stress responses. A complex commander system of multiple stress-responsive transcription factors, observed here and elsewhere, indicates that regulation of glucose starvation/diauxic shift is a highly sophisticated and well-controlled process, involving elaborative networks of different kinase/target proteins. Using S. cerevisiae as a model, basic genetic research studies on gene identification have once again proved to be essential in the comprehension of molecular basis of cellular stress responses. Insights into this fundamental and highly conserved phenomenon will endow important prospective impacts on biotechnological applications and healthcare improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akache B, Wu K, Turcotte B (2001) Phenotypic analysis of genes encoding yeast zinc cluster proteins. Nucl Acids Res 29:2181–2190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aramburu J, Ortells MC, Tejedor S, Buxade M, Lopez-Rodriguez C (2014) Transcriptional regulation of the stress response by mTOR. Sci Signal 7:re2

    Article  PubMed  Google Scholar 

  • Barnett JA, Entian KD (2005) A history of research on yeasts 9: regulation of sugar metabolism. Yeast Chichester Engl 22:835–894

    Article  CAS  Google Scholar 

  • Bjornsti MA, Houghton PJ (2004) The TOR pathway: a target for cancer therapy. Nat Rev Cancer 4:335–348

    Article  CAS  PubMed  Google Scholar 

  • Blagosklonny MV (2007) An anti-aging drug today: from senescence-promoting genes to anti-aging pill. Drug Discov Today 12:218–224

    Article  CAS  PubMed  Google Scholar 

  • Cardenas ME, Cutler NS, Lorenz MC, Di Como CJ, Heitman J (1999) The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev 13:3271–3279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlson M (1999) Glucose repression in yeast. Curr Opin Microbiol 2:202–207

    Article  CAS  PubMed  Google Scholar 

  • Carroll AS, O’Shea EK (2002) Pho85 and signaling environmental conditions. Trends Biochem Sci 27:87–93

    Article  CAS  PubMed  Google Scholar 

  • Celenza JL, Carlson M (1984) Structure and expression of the SNF1 gene of Saccharomyces cerevisiae. Mol Cell Biol 4:54–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conrad M, Schothorst J, Kankipati HN, Van Zeebroeck G, Rubio-Texeira M, Thevelein JM (2014) Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 38:254–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crozet P, Margalha L, Confraria A, Rodrigues A, Martinho C, Adamo M, Elias CA, Baena-Gonzalez E (2014) Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinases. Front Plant Sci 5:190

    Article  PubMed  PubMed Central  Google Scholar 

  • de la Torre-Ruiz MA, Pujol N, Sundaran V (2015) Coping with oxidative stress. The yeast model. Curr Drug Targets 16:2–12

    Article  PubMed  Google Scholar 

  • DeRisi JL, Iyer VR, Brown PO (1997a) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science NY 278:680–686

    Article  CAS  Google Scholar 

  • DeRisi JL, Iyer VR, Brown PO (1997b) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680–686

    Article  CAS  PubMed  Google Scholar 

  • Eleutherio E, Panek A, De Mesquita JF, Trevisol E, Magalhaes R (2015) Revisiting yeast trehalose metabolism. Curr Genet 61:263–274

    Article  CAS  PubMed  Google Scholar 

  • Emanuelle S, Doblin MS, Stapleton DI, Bacic A, Gooley PR (2016) Molecular insights into the enigmatic metabolic regulator, SnRK1. Trends Plant Sci 21:341–353

    Article  CAS  PubMed  Google Scholar 

  • Ferretti AC, Larocca MC, Favre C (2012) Nutritional stress in eukaryotic cells: oxidative species and regulation of survival in time of scarceness. Mol Genet Metab 105:186–192

    Article  CAS  PubMed  Google Scholar 

  • Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev MMBR 62:334–361

    CAS  PubMed  Google Scholar 

  • Ganguly R, Hong CS, Smith LG, Kornblum HI, Nakano I (2014) Maternal embryonic leucine zipper kinase: key kinase for stem cell phenotype in glioma and other cancers. Mol Cancer Ther 13:1393–1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasmi N, Jacques PE, Klimova N, Guo X, Ricciardi A, Robert F, Turcotte B (2014) The switch from fermentation to respiration in Saccharomyces cerevisiae is regulated by the Ert1 transcriptional activator/repressor. Genetics 198:547–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghillebert R, Swinnen E, Wen J, Vandesteene L, Ramon M, Norga K, Rolland F, Winderickx J (2011) The AMPK/SNF1/SnRK1 fuel gauge and energy regulator: structure, function and regulation. FEBS J 278:3978–3990

    Article  CAS  PubMed  Google Scholar 

  • Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, Dow S, Lucau-Danila A, Anderson K, Andre B, Arkin AP, Astromoff A, El-Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian KD, Flaherty P, Foury F, Garfinkel DJ, Gerstein M, Gotte D, Guldener U, Hegemann JH, Hempel S, Herman Z, Jaramillo DF, Kelly DE, Kelly SL, Kotter P, LaBonte D, Lamb DC, Lan N, Liang H, Liao H, Liu L, Luo C, Lussier M, Mao R, Menard P, Ooi SL, Revuelta JL, Roberts CJ, Rose M, Ross-Macdonald P, Scherens B, Schimmack G, Shafer B, Shoemaker DD, Sookhai-Mahadeo S, Storms RK, Strathern JN, Valle G, Voet M, Volckaert G, Wang CY, Ward TR, Wilhelmy J, Winzeler EA, Yang Y, Yen G, Youngman E, Yu K, Bussey H, Boeke JD, Snyder M, Philippsen P, Davis RW, Johnston M (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391

    Article  CAS  PubMed  Google Scholar 

  • Gray JV, Petsko GA, Johnston GC, Ringe D, Singer RA, Werner-Washburne M (2004) “Sleeping beauty”: quiescence in Saccharomyces cerevisiae. Microbiol Mol Biol Rev MMBR 68:187–206

    Article  CAS  PubMed  Google Scholar 

  • Hedges D, Proft M, Entian KD (1995) CAT8, a new zinc cluster-encoding gene necessary for derepression of gluconeogenic enzymes in the yeast Saccharomyces cerevisiae. Mol Cell Biol 15:1915–1922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho YH, Gasch AP (2015) Exploiting the yeast stress-activated signaling network to inform on stress biology and disease signaling. Curr Genet 61:503–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang D, Friesen H, Andrews B (2007) Pho85, a multifunctional cyclin-dependent protein kinase in budding yeast. Mol Microbiol 66:303–314

    Article  CAS  PubMed  Google Scholar 

  • Jacinto E, Hall MN (2003) Tor signalling in bugs, brain and brawn. Nat Rev Mol Cell Biol 4:117–126

    Article  CAS  PubMed  Google Scholar 

  • Jansuriyakul S, Somboon P, Rodboon N, Kurylenko O, Sibirny A, Soontorngun N (2016) The zinc cluster transcriptional regulator Asg1 transcriptionally coordinates oleate utilization and lipid accumulation in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 100:4549–4560

    Article  CAS  PubMed  Google Scholar 

  • Kaffman A, Herskowitz I, Tjian R, O’Shea EK (1994) Phosphorylation of the transcription factor PHO4 by a cyclin-CDK complex, PHO80-PHO85. Science N Y 263:1153–1156

    Article  CAS  Google Scholar 

  • Kang HJ, Chang M, Kang CM, Park YS, Yoon BJ, Kim TH, Yun CW (2014) The expression of PHO92 is regulated by Gcr1, and Pho92 is involved in glucose metabolism in Saccharomyces cerevisiae. Curr Genet 60:247–253

    Article  CAS  PubMed  Google Scholar 

  • Karpichev IV, Small GM (1998) Global regulatory functions of Oaf1p and Pip2p (Oaf2p), transcription factors that regulate genes encoding peroxisomal proteins in Saccharomyces cerevisiae. Mol Cell Biol 18:6560–6570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin SS, Manchester JK, Gordon JI (2003) Sip2, an N-myristoylated beta subunit of Snf1 kinase, regulates aging in Saccharomyces cerevisiae by affecting cellular histone kinase activity, recombination at rDNA loci, and silencing. J Biol Chem 278:13390–13397

    Article  CAS  PubMed  Google Scholar 

  • MacPherson S, Larochelle M, Turcotte B (2006) A fungal family of transcriptional regulators: the zinc cluster proteins. Microbiol Mol Biol Rev MMBR 70:583–604

    Article  CAS  PubMed  Google Scholar 

  • Martin DE, Hall MN (2005) The expanding TOR signaling network. Curr Opin Cell Biol 17:158–166

    Article  CAS  PubMed  Google Scholar 

  • Martinez MJ, Roy S, Archuletta AB, Wentzell PD, Anna-Arriola SS, Rodriguez AL, Aragon AD, Quinones GA, Allen C, Werner-Washburne M (2004) Genomic analysis of stationary-phase and exit in Saccharomyces cerevisiae: gene expression and identification of novel essential genes. Mol Biol Cell 15:5295–5305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa N, DeRisi J, Brown PO (2000) New components of a system for phosphate accumulation and polyphosphate metabolism in Saccharomyces cerevisiae revealed by genomic expression analysis. Mol Biol Cell 11:4309–4321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pluskal T, Hayashi T, Saitoh S, Fujisawa A, Yanagida M (2011) Specific biomarkers for stochastic division patterns and starvation-induced quiescence under limited glucose levels in fission yeast. FEBS J 278:1299–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ptacek J, Devgan G, Michaud G, Zhu H, Zhu X, Fasolo J, Guo H, Jona G, Breitkreutz A, Sopko R, McCartney RR, Schmidt MC, Rachidi N, Lee SJ, Mah AS, Meng L, Stark MJ, Stern DF, De Virgilio C, Tyers M, Andrews B, Gerstein M, Schweitzer B, Predki PF, Snyder M (2005) Global analysis of protein phosphorylation in yeast. Nature 438:679–684

    Article  CAS  PubMed  Google Scholar 

  • Raught B, Gingras AC, Sonenberg N (2001) The target of rapamycin (TOR) proteins. Proc Natl Acad Sci USA 98:7037–7044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolland F, Winderickx J, Thevelein JM (2002) Glucose-sensing and -signalling mechanisms in yeast. FEMS Yeast Res 2:183–201

    Article  CAS  PubMed  Google Scholar 

  • Rottensteiner H, Kal AJ, Filipits M, Binder M, Hamilton B, Tabak HF, Ruis H (1996) Pip2p: a transcriptional regulator of peroxisome proliferation in the yeast Saccharomyces cerevisiae. EMBO J 15:2924–2934

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rutter GA, Leclerc I (2009) The AMP-regulated kinase family: enigmatic targets for diabetes therapy. Mol Cell Endocrinol 297:41–49

    Article  CAS  PubMed  Google Scholar 

  • Salminen A, Kauppinen A, Kaarniranta K (2016) AMPK/Snf1 signaling regulates histone acetylation: impact on gene expression and epigenetic functions. Cell Signal 28:887–895

    Article  CAS  PubMed  Google Scholar 

  • Schuller HJ (2003) Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr Genet 43:139–160

    PubMed  Google Scholar 

  • Shashkova S, Welkenhuysen N, Hohmann S (2015) Molecular communication: crosstalk between the Snf1 and other signaling pathways. FEMS Yeast Res 15:fov026

    Article  PubMed  Google Scholar 

  • Smets B, Ghillebert R, De Snijder P, Binda M, Swinnen E, De Virgilio C, Winderickx J (2010) Life in the midst of scarcity: adaptations to nutrient availability in Saccharomyces cerevisiae. Curr Genet 56:1–32

    Article  CAS  PubMed  Google Scholar 

  • Soontorngun N, Larochelle M, Drouin S, Robert F, Turcotte B (2007) Regulation of gluconeogenesis in Saccharomyces cerevisiae is mediated by activator and repressor functions of Rds2. Mol Cell Biol 27:7895–7905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soontorngun N, Baramee S, Tangsombatvichit C, Thepnok P, Cheevadhanarak S, Robert F, Turcotte B (2012) Genome-wide location analysis reveals an important overlap between the targets of the yeast transcriptional regulators Rds2 and Adr1. Biochem Biophys Res Commun 423:632–637

    Article  CAS  PubMed  Google Scholar 

  • Tangsombatvichit P, Semkiv MV, Sibirny AA, Jensen LT, Ratanakhanokchai K, Soontorngun N (2015) Zinc cluster protein Znf1, a novel transcription factor of non-fermentative metabolism in Saccharomyces cerevisiae. FEMS Yeast Res 15:1–16

    Article  Google Scholar 

  • Taymaz-Nikerel H, Lara AR (2016) Editorial: quantitative systems biology for engineering organisms and pathways. Front Bioeng Biotechnol 4:22

    PubMed  PubMed Central  Google Scholar 

  • Taymaz-Nikerel H, Cankorur-Cetinkaya A, Kirdar B (2016) Genome-wide transcriptional response of Saccharomyces cerevisiae to stress-induced perturbations. Front Bioeng Biotechnol 4:17

    PubMed  PubMed Central  Google Scholar 

  • Thepnok P, Ratanakhanokchai K, Soontorngun N (2014) The novel zinc cluster regulator Tog1 plays important roles in oleate utilization and oxidative stress response in Saccharomyces cerevisiae. Biochem Biophys Res Commun 450:1276–1282

    Article  CAS  PubMed  Google Scholar 

  • Turcotte B, Liang XB, Robert F, Soontorngun N (2010) Transcriptional regulation of nonfermentable carbon utilization in budding yeast. FEMS Yeast Res 10:2–13

    Article  CAS  PubMed  Google Scholar 

  • Vallier LG, Carlson M (1994) Synergistic release from glucose repression by mig1 and ssn mutations in Saccharomyces cerevisiae. Genetics 137:49–54

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vicente-Duenas C, Gonzalez-Herrero I, Garcia Cenador MB, Garcia Criado FJ, Sanchez-Garcia I (2012) Loss of p53 exacerbates multiple myeloma phenotype by facilitating the reprogramming of hematopoietic stem/progenitor cells to malignant plasma cells by MafB. Cell Cycle Georget Tex 11:3896–3900

    Article  CAS  Google Scholar 

  • Vincent O, Carlson M (1998) Sip4, a Snf1 kinase-dependent transcriptional activator, binds to the carbon source-responsive element of gluconeogenic genes. EMBO J 17:7002–7008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H, Chu AM, Connelly C, Davis K, Dietrich F, Dow SW, El Bakkoury M, Foury F, Friend SH, Gentalen E, Giaever G, Hegemann JH, Jones T, Laub M, Liao H, Liebundguth N, Lockhart DJ, Lucau-Danila A, Lussier M, M’Rabet N, Menard P, Mittmann M, Pai C, Rebischung C, Revuelta JL, Riles L, Roberts CJ, Ross-MacDonald P, Scherens B, Snyder M, Sookhai-Mahadeo S, Storms RK, Veronneau S, Voet M, Volckaert G, Ward TR, Wysocki R, Yen GS, Yu K, Zimmermann K, Philippsen P, Johnston M, Davis RW (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science N Y 285:901–906

    Article  CAS  Google Scholar 

  • Yadav KK, Singh N, Rajasekharan R (2016) Responses to phosphate deprivation in yeast cells. Curr Genet 62:301–307

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I am thankful to my previous supervisor Dr. B. Turcotte (McGill University, Canada) and supportive colleague Dr. A. Sibirny (NAS of Ukraine, Ukraine, and Rzeszow University, Poland) for critical reading and kind suggestions. I also thank P. Somboon, T. Chumphon (KMUTT, Thailand), C. Butler (KMUTT, Thailand) and C. Salisbury (Chiang Mai University, Thailand) for kind assistance and editing. I also acknowledge National Research Council of Thailand, Thailand Research Fund, Office of Higher Education Commission and King Mongkut’s University of Technology for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitnipa Soontorngun.

Additional information

Communicated by M. Kupiec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soontorngun, N. Reprogramming of nonfermentative metabolism by stress-responsive transcription factors in the yeast Saccharomyces cerevisiae . Curr Genet 63, 1–7 (2017). https://doi.org/10.1007/s00294-016-0609-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-016-0609-z

Keywords

Navigation