Skip to main content

Advertisement

Log in

Stress tolerance and virulence of insect-pathogenic fungi are determined by environmental conditions during conidial formation

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The virulence to insects and tolerance to heat and UV-B radiation of conidia of entomopathogenic fungi are greatly influenced by physical, chemical, and nutritional conditions during mycelial growth. This is evidenced, for example, by the stress phenotypes of Metarhizium robertsii produced on various substrates. Conidia from minimal medium (Czapek’s medium without sucrose), complex medium, and insect (Lepidoptera and Coleoptera) cadavers had high, moderate, and poor tolerance to UV-B radiation, respectively. Furthermore, conidia from minimal medium germinated faster and had increased heat tolerance and were more virulent to insects than those from complex medium. Low water-activity or alkaline culture conditions also resulted in production of conidia with high tolerance to heat or UV-B radiation. Conidia produced on complex media exhibited lower stress tolerance, whereas those from complex media supplemented with NaCl or KCl (to reduce water activity) were more tolerant to heat and UV-B than those from the unmodified complex medium. Osmotic and nutritive stresses resulted in production of conidia with a robust stress phenotype, but also were associated with low conidial yield. Physical conditions such as growth under illumination, hypoxic conditions, and heat shock before conidial production also induced both higher UV-B and heat tolerance; but conidial production was not decreased. In conclusion, physical and chemical parameters, as well as nutrition source, can induce great variability in conidial tolerance to stress for entomopathogenic fungi. Implications are discussed in relation to the ecology of entomopathogenic fungi in the field, and to their use for biological control. This review will cover recent technologies on improving stress tolerance of entomopathogenic fungi for biological control of insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agarwal L, Qureshi A, Kalia VC, Kapley A, Purohit HJ, Singh RN (2014) Arid ecosystem: future option for carbon sinks using microbial community intelligence. Curr Sci 106:1357–1363

    CAS  Google Scholar 

  • Ali S, Wang ZQ, Ren SX, Huang Z (2011) Superoxide dismutase production by Isaria fumosorosea on metals and its role in stress tolerance and fungal virulence. Biocontrol Sci Technol 21:1457–1469. doi:10.1080/09583157.2011.635784

    Google Scholar 

  • Ali S, Huang Z, Li HX, Bashir MH, Ren SX (2013) Antioxidant enzyme influences germination, stress tolerance, and virulence of Isaria fumosorosea. J Basic Microbiol 53:489–497. doi:10.1002/jobm.201100645

    CAS  PubMed  Google Scholar 

  • Andersen M, Magan N, Mead A, Chandler D (2006) Development of a population-based threshold model of conidial germination for analysing the effects of physiological manipulation on the stress tolerance and infectivity of insect pathogenic fungi. Environ Microbiol 8:1625–1634. doi:10.1111/j.1432-2920.2006.01055.x

    CAS  PubMed  Google Scholar 

  • Atlas RM, Bartha R (1998) Microbial ecology: fundamentals and applications, vol Publisher: Pearson Higher Education, 4th edn. Benjamin Cummings/Prentice Hall, Menlo Park

  • Avalos J, Estrada AF (2010) Regulation by light in Fusarium. Fungal Genet Biol 47:930–938. doi:10.1016/j.fgb.2010.05.001

    CAS  PubMed  Google Scholar 

  • Avalos J, Limón MC (2014) Biological roles of fungal carotenoids Curr Genet 1–16. doi:10.1007/s00294-014-0454-x

  • Azevedo RFF, Souza RKF, Braga GUL, Rangel DEN (2014) Responsiveness of entomopathogenic fungi to menadione-induced oxidative stress. Fungal Biol 118:990–995. doi:10.1016/j.funbio.2014.09.003

    CAS  PubMed  Google Scholar 

  • Bahn YS, Xue C, Idnurm A, Rutherford JC, Heitman J, Cardenas ME (2007) Sensing the environment: lessons from fungi. Nat Rev Microbiol 5:57–69

    CAS  PubMed  Google Scholar 

  • Barelli L, Padilla-Guerrero IE, Bidochka MJ (2011) Differential expression of insect and plant specific adhesin genes, Mad1 and Mad2, in Metarhizium robertsii. Fungal Biol 115:1174–1185. doi:10.1016/j.funbio.2011.08.003

    CAS  PubMed  Google Scholar 

  • Behie SW, Zelisko PM, Bidochka MJ (2012) Endophytic insect-parasitic fungi translocate nitrogen directly from insects to plants. Science 336:1576–1577. doi:10.1126/science.1222289

    CAS  PubMed  Google Scholar 

  • Bell ANW, Magill E, Hallsworth JE, Timson DT (2013) Effects of alcohols and compatible solutes on the activity of ß-galactosidase. Appl Biochem Biotech 169:786–796

    CAS  Google Scholar 

  • Benaroudj N, Lee DH, Goldberg AL (2001) Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J Biol Chem 276:24261–24267

    CAS  PubMed  Google Scholar 

  • Bhaganna P, Volkers RJM, Bell ANW, Kluge K, Timson DJ, McGrath JW, Ruijssenaars HJ, Hallsworth JE (2010) Hydrophobic substances induce water stress in microbial cells. Microb Biotechnol 3:701–716. doi:10.1111/j.1751-7915.2010.00203.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bjedov I, Tenaillon O, Gerard B, Souza V, Denamur E, Radman M, Taddei F, Matic I (2003) Stress-induced mutagenesis in bacteria. Science 300:1404–1409. doi:10.1126/science.1082240

    CAS  PubMed  Google Scholar 

  • Braga GUL, Flint SD, Miller CD, Anderson AJ, Roberts DW (2001) Variability in response to UV-B among species and strains of Metarhizium anisopliae isolates from sites at latitudes from 61°N to 54°S. J Invertebr Pathol 78:98–108

    CAS  PubMed  Google Scholar 

  • Braga GUL, Rangel DEN, Flint SD, Anderson AJ, Roberts DW (2006) Conidial pigmentation is important to tolerance against solar-simulated radiation in the entomopathogenic fungus Metarhizium anisopliae. Photochem Photobiol 82:418–422

    CAS  PubMed  Google Scholar 

  • Brefeld O (1877) Botanische Untersuchungen uber Schimmelpilze. In: Felix A (ed) III. Basidiomyceten, vol I. Leipzig, Germany, p 226

  • Burnie JP, Carter TL, Hodgetts SJ, Matthews RC (2006) Fungal heat-shock proteins in human disease. FEMS Microbiol Rev 30:53–88

    CAS  PubMed  Google Scholar 

  • Canessa P, Schumacher J, Hevia MA, Tudzynski P, Larrondo LF (2013) Assessing the effects of light on differentiation and virulence of the plant pathogen Botrytis cinerea: characterization of the white collar complex. PLoS One 8 doi:10.1371/journal.pone.0084223

  • Cappa F, Cattivelli D, Cocconcelli PS (2005) The uvrA gene is involved in oxidative and acid stress responses in Lactobacillus helveticus CNBL1156. Res Microbiol 156:1039–1047

    CAS  PubMed  Google Scholar 

  • Chaturvedi V, Wong B, Newman SL (1996) Oxidative killing of Cryptococcus neoformans by human neutrophils. Evidence that fungal mannitol protects by scavenging reactive oxygen intermediates. J Immunol 156:3836–3840

    CAS  PubMed  Google Scholar 

  • Chin JP, Megaw J, Magill CL, Nowotarski K, Williams JP, Bhaganna P, Linton M, Patterson MF, Underwood GJC, Mswaka AY, Hallsworth JE (2010) Solutes determine the temperature windows for microbial survival and growth. Proc Natl Acad Sci USA 107:7835–7840. doi:10.1073/pnas.1000557107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cochrane VW (1958) Physiology of fungi. Wiley, New York

    Google Scholar 

  • Corrochano LM, Cerda-Olmedo E (1988) Photomorphogenesis in Phycomyces: dependence on environmental conditions. Planta 174:309–314. doi:10.1007/bf00959515

    CAS  PubMed  Google Scholar 

  • Corrochano LM, Cerdá-Olmedo E (1992) Sex, light and carotenes: the development of Phycomyces. Trends Genet 8:268–274

    CAS  PubMed  Google Scholar 

  • Cray JA, Bell ANW, Bhaganna P, Mswaka AY, Timson DJ, Hallsworth JE (2013a) The biology of habitat dominance; can microbes behave as weeds? Microb Biotechnol 6:453–492. doi:10.1111/1751-7915.12027

    PubMed Central  PubMed  Google Scholar 

  • Cray JA, Russell JT, Timson DJ, Singhal RS, Hallsworth JE (2013b) A universal measure of chaotropicity and kosmotropicity. Environ Microbiol 15:287–296. doi:10.1111/1462-2920.12018

    CAS  PubMed  Google Scholar 

  • Cray JA, Stevenson A, Ball P, Bankar SB, Eleutherio ECA, Ezeji TC, Singhal RS, Thevelein JM, Timson DJ, Hallsworth JE (2015a) Chaotropicity: a key factor in product tolerance of biofuel producing microorganisms. Curr Opin Biotechnol doi:10.1016/j.copbio.2015.02.010

    PubMed  Google Scholar 

  • Cray JA, Houghton JDR, Cooke LR Hallsworth JE (2015b) A simple inhibition coefficient for quantifying potency of biocontrol agents against plant-pathogenic fungi. Biol Control 81:93–100

    Google Scholar 

  • Crespo R, Juarez MP, Dal Bello GM, Padin S, Fernandez GC, Pedrini N (2002) Increased mortality of Acanthoscelides obtectus by alkane-grown Beauveria bassiana. Biocontrol 47:685–696

    CAS  Google Scholar 

  • Crowe JH, Crowe LM, Chapman D (1984) Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 223:701–703

    CAS  PubMed  Google Scholar 

  • de Crecy E, Jaronski S, Lyons B, Lyons TJ, Keyhani NO (2009) Directed evolution of a filamentous fungus for thermotolerance. BMC Biotechnol 9:74

    PubMed Central  PubMed  Google Scholar 

  • de Menezes HD, Massola Júnior NS, Flint SD, da Silva GJ, Bachmann L, Rangel DEN, Braga GUL (2014) Growth under visible light increases conidia and mucilage production and tolerance to UV-B radiation in the plant-pathogenic fungus Colletotrichum acutatum. Photochem Photobiol. doi:10.1111/php.12410

  • de Nobel H, Lawrie L, Brul S, Klis F, Davis M, Alloush H, Coote P (2001) Parallel and comparative analysis of the proteome and transcriptome of sorbic acid-stressed Saccharomyces cerevisiae. Yeast 18:1413–1428. doi:10.1002/yea.793

    PubMed  Google Scholar 

  • de Paula RM, Lamb TM, Bennett L, Bell-Pedersen D (2008) A connection between MAPK pathways and circadian clocks. Cell Cycle 7:2630–2634. doi:10.4161/cc.7.17.6516

    PubMed Central  PubMed  Google Scholar 

  • de Pinho CA, de Lourdes M, Polizeli TM, Jorge JA, Terenzi HF (2001) Mobilisation of trehalose in mutants of the cyclic AMP signalling pathway, cr-1 (CRISP-1) and mcb (microcycle conidiation), of Neurospora crassa. FEMS Microbiol Lett 199:85–89

    PubMed  Google Scholar 

  • Deacon JW (1997) Modern mycology. Blackwell Science Ltd., Oxford

    Google Scholar 

  • DeRisi JL, Iyer VR, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680–686

    CAS  PubMed  Google Scholar 

  • Diano A, Peeters J, Dynesen J, Nielsen J (2009) Physiology of Aspergillus niger in oxygen-limited continuous cultures: influence of aeration, carbon source concentration and dilution rate. Biotechnol Bioeng 103:956–965

    CAS  PubMed  Google Scholar 

  • Duan ZB, Chen YX, Huang W, Shang YF, Chen PL, Wang CS (2013) Linkage of autophagy to fungal development, lipid storage and virulence in Metarhizium robertsii. Autophagy 9:538–549. doi:10.4161/auto.23575

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dutta K, Verma NC (1998) Exposure to low dose of gamma radiation enhances the excision repair in Saccharomyces cerevisiae. J Gen Appl Microbiol 44:243–249

    CAS  PubMed  Google Scholar 

  • Eleutherio EC, Araujo PS, Panek AD (1993) Role of the trehalose carrier in dehydration resistance of Saccharomyces cerevisiae. Biochim Biophys Acta 1156:263–266

    CAS  PubMed  Google Scholar 

  • Eleutherio E, Panek AD, de Mesquita JF, Trevisol E, Magalhães R (2014) Revisiting yeast trehalose metabolism Curr Genet 1–12. doi:10.1007/s00294-014-0450-1

  • Ernande B, Dieckmann U (2004) The evolution of phenotypic plasticity in spatially structured environments: implications of intraspecific competition, plasticity costs and environmental characteristics. J Evol Biol 17:613–628

    CAS  PubMed  Google Scholar 

  • Fang WG, St Leger RJ (2012) Enhanced UV resistance and improved killing of malaria mosquitoes by photolyase transgenic entomopathogenic fungi PLoS One 7. doi:10.1371/journal.pone.0043069

  • Fargues J, Maniania NK, Delmas JC, Smits N (1992) Influence de la température sur la croissance in vitro d’hyphomycètes entomopathogènes. Agronomie 12:557–564

    Google Scholar 

  • Fargues J, Goettel MS, Smits N, Ouedraogo A, Vidal C, Lacey LA, Lomer CJ, Rougier M (1996) Variability in susceptibility to simulated sunlight of conidia among isolates of entomopathogenic Hyphomycetes. Mycopathologia 135:171–181

    CAS  PubMed  Google Scholar 

  • Faria M, Wraight SP (2001) Biological control of Bemisia tabaci with fungi. Crop Prot 20:767–778

    Google Scholar 

  • Faria MR, Wraight SP (2007) Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 43:237–256

    Google Scholar 

  • Fernandes EK, Rangel DEN, Moraes AM, Bittencourt VR, Roberts DW (2007) Variability in tolerance to UV-B radiation among Beauveria spp. isolates. J Invertebr Pathol 96:237–243

    CAS  PubMed  Google Scholar 

  • Fernandes EKK, Rangel DEN, Moraes AML, Bittencourt VREP, Roberts DW (2008) Cold activity of Beauveria and Metarhizium, and thermotolerance of Beauveria. J Invertebr Pathol 98:69–78

    PubMed  Google Scholar 

  • Fernandes EKK, Keyser CA, Chong JP, Rangel DEN, Miller MP, Roberts DW (2010) Characterization of Metarhizium species and varieties based on molecular analysis, heat tolerance and cold activity. J Appl Microbiol 108:115–128

    CAS  PubMed  Google Scholar 

  • Fernandes EKK, Angelo IC, Rangel DEN, Bahiense TC, Moraes AM, Roberts DW, Bittencourt VR (2011) An intensive search for promising fungal biological control agents of ticks, particularly Rhipicephalus microplus. Vet Parasitol 182:307–318. doi:10.1016/j.vetpar.2011.05.046

    PubMed  Google Scholar 

  • Ferrandon D, Imler J-L, Hetru C, Hoffmann JA (2007) The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nat Rev Immunol 7:862–874

    CAS  PubMed  Google Scholar 

  • Fillinger S, Chaveroche MK, van Dijck P, de Vries R, Ruijter G, Thevelein J, d’Enfert C (2001) Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans. Microbiology 147:1851–1862

    CAS  PubMed  Google Scholar 

  • Freimoser FM, Screen S, Bagga S, Hu G, Leger RJ (2003) Expressed sequence tag (EST) analysis of two subspecies of Metarhizium anisopliae reveals a plethora of secreted proteins with potential activity in insect hosts. Microbiology 149:239–247

    CAS  PubMed  Google Scholar 

  • Freimoser FM, Hu G, Leger RJ (2005) Variation in gene expression patterns as the insect pathogen Metarhizium anisopliae adapts to different host cuticles or nutrient deprivation in vitro. Microbiology 151:361–371

    CAS  PubMed  Google Scholar 

  • Fuller KK, Ringelberg CS, Loros JJ, Dunlap JC (2013) The fungal pathogen Aspergillus fumigatus regulates growth, metabolism, and stress resistance in response to light. MBio 4. doi:10.1128/mBio.00142-13

  • Fuller K, Loros J, Dunlap J (2014) Fungal photobiology: visible light as a signal for stress, space and time Curr Genet 1–14. doi:10.1007/s00294-014-0451-0

  • Gao Q, Garcia-Pichel F (2011) Microbial ultraviolet sunscreens. Nat Rev Microbiol 9:791–802. doi:10.1038/Nrmicro2649

    CAS  PubMed  Google Scholar 

  • Gao Q, Jin K, Ying SH, Zhang Y, Xiao G, Shang Y, Duan Z, Hu X, Xie XQ, Zhou G, Peng G, Luo Z, Huang W, Wang B, Fang W, Wang S, Zhong Y, Ma LJ, St Leger RJ, Zhao GP, Pei Y, Feng MG, Xia Y, Wang C (2011) Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. PLoS Genet 7:e1001264. doi:10.1371/journal.pgen.1001264

  • Garvie LAJ, Knauth LP, Bungartz F, Klonowski S, Nash TH (2008) Life in extreme environments: survival strategy of the endolithic desert lichen Verrucaria rubrocincta. Naturwissenschaften 95:705–712. doi:10.1007/s00114-008-0373-0

    CAS  PubMed  Google Scholar 

  • Garza-Lopez PM, Konigsberg M, Gomez-Quiroz LE, Loera O (2012) Physiological and antioxidant response by Beauveria bassiana Bals (Vuill.) to different oxygen concentrations. World J Microbiol Biotechnol 28:353–359. doi:10.1007/s11274-011-0827-y

    CAS  PubMed  Google Scholar 

  • Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gerhardt KE, Wilson MI, Greenberg BM (1999) Tryptophan photolysis leads to a UVB-induced 66 kDa photoproduct of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in vitro and in vivo. Photochem Photobiol 70:49–56

    CAS  Google Scholar 

  • Goodson M, Rowbury RJ (1990) Habituation to alkali and increased UV-resistance in DNA repair-proficient and -deficient strains of Escherichia coli grown at pH 9.0. Lett Appl Microbiol 11:123–125

    CAS  Google Scholar 

  • Griffin DH (1996) Fungal physiology, 2nd edn. Wiley, New York

    Google Scholar 

  • Griffiths HR, Mistry P, Herbert KE, Lunec J (1998) Molecular and cellular effects of ultraviolet light-induced genotoxicity. Crit Rev Clin Lab Sci 35:189–237

    CAS  PubMed  Google Scholar 

  • Hallsworth JE (1998) Ethanol-induced water stress in yeast. J Ferment Bioeng 85:125–137

    CAS  Google Scholar 

  • Hallsworth JE, Magan N (1994a) Effect of carbohydrate type and concentration on polyols and trehalose in conidia of three entomopathogenic fungi. Microbiology 140:2705–2713

    CAS  Google Scholar 

  • Hallsworth JE, Magan N (1994b) Effects of KCl concentration on accumulation of acyclic sugar alcohols and trehalose in conidia of three entomopathogenic fungi. Lett Appl Microbiol 18:8–11. doi:10.1111/j.1472-765X.1994.tb00785.x

    CAS  Google Scholar 

  • Hallsworth JE, Magan N (1994c) Improved biological control by changing polyols/trehalose in conidia of entomopathogens. Bright Crop Prot Conf Pests Dis 8D:1091–1096

    Google Scholar 

  • Hallsworth JE, Magan N (1995) Manipulation of intracellular glycerol and erythritol enhances germination of conidia at low water availability. Microbiology 141:1109–1115

    CAS  PubMed  Google Scholar 

  • Hallsworth JE, Magan N (1996) Culture age, temperature, and pH affect the polyol and trehalose contents of fungal propagules. Appl Environ Microbiol 62:2435–2442

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hallsworth JE, Magan M (1997) A rapid HPLC protocol for detection of polyols and trehalose. J Microbiol Meth 29: 7–13

    CAS  Google Scholar 

  • Hallsworth JE, Magan N (1999) Water and temperature relations of growth of three entomogenous fungi Beauveria bassiana, Metarhizium anisopliae and Paecilomyces farinosus. J Invertebr Pathol 74:261–266

    PubMed  Google Scholar 

  • Hallsworth JE, Heim S, Timmis KN (2003a) Chaotropic solutes cause water stress in Pseudomonas putida. Environ Microbiol 5:1270–1280. doi:10.1046/j.1462-2920.2003.00478.x

    CAS  PubMed  Google Scholar 

  • Hallsworth JE, Prior BA, Nomura Y, Iwahara M, Timmis KN (2003b) Compatible solutes protect against chaotrope (ethanol)-induced, nonosmotic water stress. Appl Environ Microbiol 69:7032–7034. doi:10.1128/aem.69.12.7032-7034.2003

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hanna MN, Ferguson RJ, Li YH, Cvitkovitch DG (2001) uvrA is an acid-inducible gene involved in the adaptive response to low pH in Streptococcus mutans. J Bacteriol 183:5964–5973

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harman GE, Jin X, Stasz TE, Peruzzotti G, Leopold AC, Taylor AG (1991) Production of conidial biomass of Trichoderma harzianum for biological control. Biol Control 1:23–28

    Google Scholar 

  • Harrison JP, Hallsworth JE, Cockell CS (2015) Reduction of the temperature sensitivity of Halomonas hydrothermalis by iron starvation combined with microaerobic conditions. Appl Environ Microbiol 81:2156–2162

    CAS  PubMed  Google Scholar 

  • Herdeiro RS, Pereira MD, Panek AD, Eleutherio ECA (2006) Trehalose protects Saccharomyces cerevisiae from lipid peroxidation during oxidative stress. Bba-Gen Subj 1760:340–346. doi:10.1016/j.bbagen.2006.01.010

    CAS  Google Scholar 

  • Hoffmann H (1860) Untersuchungen tiber die Keimung der Pilzsporen Jahrb f wiss Botanik 2:267––337

  • Hoffmann AA, Parsons PA (1991) Evolutionary genetics and environmental stress. Oxford University Press, Oxford

    Google Scholar 

  • Hohmann S, Mager WH (2003) Yeast stress responses. Springer-Verlag, Berlin

    Google Scholar 

  • Hottiger T, Schmutz P, Wiemken A (1987) Heat-induced accumulation of futile cycling of trehalose in Saccharomyces cerevisiae. J Bacteriol 169:5518–5522

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hottiger T, Boller T, Wiemken A (1989) Correlation of trehalose content and heat resistance in yeast mutants altered in the RAS/adenylate cyclase pathway: is trehalose a thermoprotectant? FEBS Lett 255:431–434

    CAS  PubMed  Google Scholar 

  • Hottiger T, De Virgilio C, Hall MN, Boller T, Wiemken A (1994) The role of trehalose synthesis for the acquisition of thermotolerance in yeast. II. Physiological concentrations of trehalose increase the thermal stability of proteins in vitro. Eur J Biochem 219:187–193

    CAS  PubMed  Google Scholar 

  • Hu G, Leger RJ (2002) Field studies using a recombinant mycoinsecticide (Metarhizium anisopliae) reveal that it is rhizosphere competent. Appl Environ Microbiol 68:6383–6387

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huarte-Bonnet C, Juárez MP, Pedrini N (2014) Oxidative stress in entomopathogenic fungi grown on insect-like hydrocarbons. Curr Genet 1–9. doi:10.1007/s00294-014-0452-z

  • Humber RA (2008) Evolution of entomopathogenicity in fungi. J Invertebr Pathol 98:262–266. doi:10.1016/j.jip.2008.02.017

    PubMed  Google Scholar 

  • Humber RA (2013) USDA-ARS collection of entomopathogenic fungal cultures—catalog of species. USDA-ARS Biological Integrated Pest Management Research, Robert W. Holley Center for Agriculture and Health, Ithaca

  • Hyun SH, Lee SY, Park SJ, Kim DY, Chun YJ, Sung GH, Kim SH, Choi HK (2013) Alteration of media composition and light conditions change morphology, metabolic profile, and beauvericin biosynthesis in Cordyceps bassiana mycelium. J Microbiol Biotechnol 23:47–55. doi:10.4014/jmb.1208.08058

    CAS  PubMed  Google Scholar 

  • Ibrahim L, Butt TM, Jenkinson P (2002) Effect of artificial culture media on germination, growth, virulence and surface properties of the entomopathogenic hyphomycete Metarhizium anisopliae. Mycol Res 106:705–715

    Google Scholar 

  • Jamieson DJ (1992) Saccharomyces cerevisiae has distinct adaptive responses to both hydrogen peroxide and menadione. J Bacteriol 174:6678–6681

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jennings DB, Ehrenshaft M, Pharr DM, Williamson JD (1998) Roles for mannitol and mannitol dehydrogenase in active oxygen-mediated plant defense. Proc Natl Acad Sci USA 95:15129–15133

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kar JR, Hallsworth JE, Singhal RS (2015) Fermentative production of glycine betaine and trehalose from acid whey using Actinopolyspora halophila (MTCC 263). Environ Techn Innovat. doi:10.1016/j.eti.2015.02.001

    Google Scholar 

  • Kashangura C, Hallsworth JE, Mswaka AY (2006) Phenotypic diversity amongst strains of Pleurotus sajor-caju: implications for cultivation in arid environments. Mycol Res 110: 312–317

    CAS  PubMed  Google Scholar 

  • Kayingo G, Wong B (2005) The MAP kinase Hog1p differentially regulates stress-induced production and accumulation of glycerol and D-arabitol in Candida albicans. Microbiology 151:2987–2999. doi:10.1099/mic.0.28040-0

    CAS  PubMed  Google Scholar 

  • Kennis JT, Crosson S (2007) Microbiology. A bacterial pathogen sees the light. Science 317:1041–1042

    CAS  PubMed  Google Scholar 

  • Keyser CA, Fernandes EKK, Rangel DEN, Roberts DW (2014) Heat-induced post-stress growth delay: a biological trait of many Metarhizium isolates reducing biocontrol efficacy? J Invertebr Pathol 120:67–73. doi:10.1016/j.jip.2014.05.008

    PubMed  Google Scholar 

  • Kim JS, Je YH, Roh JY (2010) Production of thermotolerant entomopathogenic Isaria fumosorosea SFP-198 conidia in corn–corn oil mixture. J Ind Microbiol Biotechnol 37:419–423. doi:10.1007/s10295-010-0692-y

    CAS  PubMed  Google Scholar 

  • Kim JS, Kassa A, Skinner M, Hata T, Parker BL (2011) Production of thermotolerant entomopathogenic fungal conidia on millet grain. J Ind Microbiol Biotechnol 38:697–704. doi:10.1007/s10295-010-0850-2

    CAS  PubMed  Google Scholar 

  • Klingen I, Eilenberg J, Meadow R (2002) Effects of farming system, field margins and bait insect on the occurrence of insect pathogenic fungi in soils. Agric Ecosyst Environ 91:191–198

    Google Scholar 

  • Kogej T, Stein M, Volkmann M, Gorbushina AA, Galinski EA, Gunde-Cimerman N (2007) Osmotic adaptation of the halophilic fungus Hortaea werneckii: role of osmolytes and melanization. Microbiology 153:4261–4273. doi:10.1099/mic.0.2007/010751-0

    CAS  PubMed  Google Scholar 

  • Lamb TM, Finch KE, Bell-Pedersen D (2012) The Neurospora crassa OS MAPK pathway-activated transcription factor ASL-1 contributes to circadian rhythms in pathway responsive clock-controlled genes. Fungal Genet Biol 49:180–188. doi:10.1016/j.fgb.2011.12.006

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lendner A (1897) Des influences combindes de la lumière et du substratum sur la développement des champignons. Ann Sci Nat (Bot) Ser 8:1–64

    Google Scholar 

  • Leng YJ, Peng GX, Cao YQ, Xia YX (2011) Genetically altering the expression of neutral trehalase gene affects conidiospore thermotolerance of the entomopathogenic fungus Metarhizium acridum. Bmc Microbiol 11. doi:10.1186/1471-2180-11-32

  • Li ZZ, Alves SB, Roberts DW, Fan MZ, Delalibera I, Tang J, Lopes RB, Faria M, Rangel DEN (2010) Biological control of insects in Brazil and China: history, current programs and reasons for their successes using entomopathogenic fungi. Biocontrol Sci Technol 20:117–136

    Google Scholar 

  • Liao X, Lu HL, Fang W, St Leger RJ (2013) Overexpression of a Metarhizium robertsii HSP25 gene increases thermotolerance and survival in soil. Appl Microbiol Biotechnol. doi:10.1007/s00253-013-5360-5

    PubMed Central  Google Scholar 

  • Lievens B, Hallsworth JE, Pozo MI, Belgacem ZB, Stevenson A, Willems KA, Jacquemyn H (2014) Microbiology of sugar-rich environments: diversity, ecology, and system constraints. Environ Microbiol 17:278–298

  • Lillie SH, Pringle JR (1980) Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. J Bacteriol 143:1384–1394

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lord JC (2005) From Metchnikoff to Monsanto and beyond: the path of microbial control. J Invertebr Pathol 89:19–29. doi:10.1016/j.jip.2005.04.006

    PubMed  Google Scholar 

  • Lovett B, St Leger R (2014) Stress is the rule rather than the exception for Metarhizium. Curr Genet 1–9. doi:10.1007/s00294-014-0447-9

  • Luo Z, Qin Y, Pei Y, Keyhani NO (2014) Ablation of the creA regulator results in amino acid toxicity, temperature sensitivity, pleiotropic effects on cellular development and loss of virulence in the filamentous fungus Beauveria bassiana. Environ Microbiol 16:1122–1136. doi:10.1111/1462-2920.12352

    CAS  PubMed  Google Scholar 

  • Luque EM, Gutiérrez G, Navarro-Sampedro L, Olmedo M, Rodríguez-Romero J, Ruger-Herreros C, Tagua VG, Corrochano LM (2012) A relationship between carotenoid accumulation and the distribution of species of the fungus Neurospora in Spain. PLoS One 7:e33658

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lynch SV, Matin A (2005) Travails of microgravity: man and microbes in space. Biologist 52

  • Magan N (2001) Physiological approaches to improving the ecological fitness of fungal biocontrol agents. In: Butt TM, Jackson CW, Magan N (eds) Fungi as biocontrol agents. CAB Publishing, Oxon

    Google Scholar 

  • Magan N (2007) Fungi in extreme environments. In: Kubicek CP, Druzhinina IS (eds) Environmental and Microbial Relationships, vol The MYCOTA IV, 2nd edn. Springer Velag, Berlin, pp 85–103

  • Marsh PB, Taylor EE, Bassler LM (1959) A guide to the literature on certain effects of light on fungi: reproduction, morphology, pigmentation, and phototropic phenomena. Plant Dis Rep Suppl 261:251–312

    Google Scholar 

  • McCammick EM, Gomase VS, Timson DJ, McGenity TJ, Hallsworth JE (2010) Water-hydrophobic compound interactions with the microbial cell. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology – hydrocarbons, oils and lipids: diversity, properties and formation, Vol. 2. Springer, New York, pp 1451–1466

    Google Scholar 

  • Medina A, Schmidt-Heydt M, Rodríguez A, Parra R, Geisen R, Magan N (2014) Impacts of environmental stress on growth, secondary metabolite biosynthetic gene clusters and metabolite production of xerotolerant/xerophilic fungi. Curr Genet 1–10. doi:10.1007/s00294-014-0455-9

  • Meijer S, Panagiotou G, Olsson L, Nielsen J (2007) Physiological characterization of xylose metabolism in Aspergillus niger under oxygen-limited conditions. Biotechnol Bioeng 98:462–475. doi:10.1002/bit.21397

    CAS  PubMed  Google Scholar 

  • Meyling NV, Eilenberg J (2006) Isolation and characterisation of Beauveria bassiana isolates from phylloplanes of hedgerow vegetation. Mycol Res 110:188–195

    CAS  PubMed  Google Scholar 

  • Meyling NV, Eilenberg J (2007) Ecology of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in temperate agroecosystems: potential for conservation biological control. Biol Control 43:145–155

    Google Scholar 

  • Miller CD, Rangel DEN, Braga GUL, Flint S, Kwon SI, Messias CL, Roberts DW, Anderson AJ (2004) Enzyme activities associated with oxidative stress in Metarhizium anisopliae during germination, mycelial growth, and conidiation and in response to near-UV irradiation. Can J Microbiol 50:41–49. doi:10.1139/W03-097

    CAS  PubMed  Google Scholar 

  • Milner RJ, Huppatz RJ, Swaris SC (1991) A new method for assessment of germination of Metarhizium conidia. J Invertebr Pathol 57:121–123

    Google Scholar 

  • Miranpuri GS, Bidochka MJ, Khachatourians GG (1991) Morphology and cytochemistry of hemocytes and analysis of hemolymph from Melanoplus sanguinipes (Orthoptera: Acrididae). J Econ Entomol 84:371–378

    Google Scholar 

  • Mitchel REJ, Morrison DP (1982) Heat-shock induction of ionizing radiation resistance in Saccharomyces cerevisiae, and correlation with stationary phase growth phase. Radiat Res 90:284–291

    CAS  PubMed  Google Scholar 

  • Mitchel REJ, Morrison DP (1983) Heat-shock induction of ultraviolet light resistance in Saccharomyces cerevisiae. Radiat Res 96:95–99

    CAS  PubMed  Google Scholar 

  • Nesci A, Etcheverry M, Magan N (2004) Osmotic and matric potential effects on growth, sugar alcohol and sugar accumulation by Aspergillus section Flavi strains from Argentina. J Appl Microbiol 96:965–972. doi:10.1111/j.1365-2672.2004.02246.x

    CAS  PubMed  Google Scholar 

  • Neves MJ, Jorge JA, Francois JM, Terenzi HF (1991) Effects of heat shock on the level of trehalose and glycogen, and on the induction of thermotolerance in Neurospora crassa. FEBS Lett 283:19–22

    CAS  PubMed  Google Scholar 

  • Nicholson WL, Law JF (1999) Method for purification of bacterial endospores from soils: UV resistance of natural Sonoran desert soil populations of Bacillus spp. with reference to Bacillus subtilis strain 168. J Microbiol Methods 35:13–21

    CAS  PubMed  Google Scholar 

  • Nickerson CA, Ott CM, Wilson JW, Ramamurthy R, LeBlanc CL, Honer zu Bentrup K, Hammond T, Pierson DL (2003) Low-shear modeled microgravity: a global environmental regulatory signal affecting bacterial gene expression, physiology, and pathogenesis. J Microbiol Methods 54:1–11

    CAS  PubMed  Google Scholar 

  • Oren A, Gunde-Cimerman N (2007) Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites? FEMS Microbiol Lett 269:1–10. doi:10.1111/j.1574-6968.2007.00650.x

    CAS  PubMed  Google Scholar 

  • Oren A, Hallsworth JE (2014) Microbial weeds in hypersaline habitats: the enigma of the weed-like Haloferax mediterranei. FEMS Microbiol Lett 359:134–142

    CAS  PubMed  Google Scholar 

  • Ortiz-Urquiza A, Keyhani NO (2014) Stress response signaling and virulence: insights from entomopathogenic fungi. Curr Genet 1–11. doi:10.1007/s00294-014-0439-9

  • Ortiz-Urquiza A, Keyhani NO, Quesada-Moraga E (2013) Culture conditions affect virulence and production of insect toxic proteins in the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci Technol 23:1199–1212. doi:10.1080/09583157.2013.822474

    Google Scholar 

  • Ownley BH, Griffin MR, Klingeman WE, Gwinn KD, Moulton JK, Pereira RM (2008) Beauveria bassiana: endophytic colonization and plant disease control. J Invertebr Pathol 98:267–270. doi:10.1016/j.jip.2008.01.010

    CAS  PubMed  Google Scholar 

  • Ownley BH, Gwinn KD, Vega FE (2010) Endophytic fungal entomopathogens with activity against plant pathogens: ecology and evolution. Biocontrol 55:113–128

    Google Scholar 

  • Park J-I, Grant CM, Attfield PV, Dawes IW (1997) The freeze–thaw stress response of the yeast Saccharomyces cerevisiae is growth phase specific and is controlled by nutritional state via the RAS-cyclic AMP signal transduction pathway. Appl Environ Microbiol 63:3818–3824

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parrou JL, Enjalbert B, Plourde L, Bauche A, Gonzalez B, François J (1999) Dynamic responses of reserve carbohydrate metabolism under carbon and nitrogen limitations in Saccharomyces cerevisiae. Yeast 15:191–203

    CAS  PubMed  Google Scholar 

  • Pedrini N, Mijailovsky SJ, Girotti JR, Stariolo R, Cardozo RM, Gentile A, Juarez MP (2009) Control of pyrethroid-resistant Chagas disease vectors with entomopathogenic fungi. PLoS Negl Trop Dis 3:e434. doi:10.1371/journal.pntd.0000434

    PubMed Central  PubMed  Google Scholar 

  • Pekrul S, Grula EA (1979) Mode of infection of the corn earworm (Heliothis zea) by Beauveria bassiana as revealed by scanning electron microscopy. J Invertebr Pathol 34:238–247. doi:10.1016/0022-2011(79)90069-7

    CAS  Google Scholar 

  • Quaite FE, Sutherland BM, Sutherland JC (1992a) Action spectrum for DNA damage in alfalfa lowers predicted impact of ozone depletion. Nature 358:576–578

    CAS  Google Scholar 

  • Quaite FE, Sutherland BM, Sutherland JC (1992b) Quantitation of pyrimidine dimers in DNA from UVB-irradiated alfafa (Medicago sativa L.) seedlings. Appl Theor Electrophor 2:171–175

    CAS  PubMed  Google Scholar 

  • Quivey RG, Faustoferri RC, Clancy KA, Marquis RE (1995) Acid adaptation in Streptococcus mutans UA159 alleviates sensitization to environmental stress due to RecA deficiency. FEMS Microbiol Lett 126:257–261. doi:10.1111/j.1574-6968.1995.tb07427.x

    CAS  PubMed  Google Scholar 

  • Rangel DEN (2000) Virulência de Aphanocladium album e Verticillium lecanii (Deuteromycotina: Hyphomycetes) para o percevejo-de-renda da seringueira, Leptopharsa hevea (Hemiptera: Tingidae) e comportamento de V. lecanii em meio de cultura. Master’s Thesis, Universidade Estadual Paulista

  • Rangel DEN (2011) Stress induced cross-protection against environmental challenges on prokaryotic and eukaryotic microbes. World J Microbiol Biotechnol 27:1281–1296. doi:10.1007/s11274-010-0584-3

    PubMed  Google Scholar 

  • Rangel DEN, Correia ADCB (2003) Virulencia de Aphanocladium album (Preuss) Gams e Verticillium lecanii (Zimm.) Viégas (Deuteromycotina: Hyphomycetes) para o percevejo-de-renda da seringueira, Leptopharsa heveae (Drake & Poor) (Hemiptera: Tingidae) Ciência e Agrotecnologia Edicao Especial 1636–1642

  • Rangel DEN, Braga GUL, Flint SD, Anderson AJ, Roberts DW (2004) Variations in UV-B tolerance and germination speed of Metarhizium anisopliae conidia produced on artificial and natural substrates. J Invertebr Pathol 87:77–83

    PubMed  Google Scholar 

  • Rangel DEN, Braga GUL, Anderson AJ, Roberts DW (2005a) Influence of growth environment on tolerance to UV-B radiation, germination speed, and morphology of Metarhizium anisopliae var. acridum conidia. J Invertebr Pathol 90:55–58

    PubMed  Google Scholar 

  • Rangel DEN, Braga GUL, Anderson AJ, Roberts DW (2005b) Variability in conidial thermotolerance of Metarhizium anisopliae isolates from different geographic origins. J Invertebr Pathol 88:116–125

    PubMed  Google Scholar 

  • Rangel DEN, Anderson AJ, Roberts DW (2006a) Growth of Metarhizium anisopliae on non-preferred carbon sources yields conidia with increased UV-B tolerance. J Invertebr Pathol 93:127–134

    CAS  PubMed  Google Scholar 

  • Rangel DEN, Butler MJ, Torabinejad J, Anderson AJ, Braga GUL, Day AW, Roberts DW (2006b) Mutants and isolates of Metarhizium anisopliae are diverse in their relationships between conidial pigmentation and stress tolerance. J Invertebr Pathol 93:170–182

    PubMed  Google Scholar 

  • Rangel DEN, Alston DG, Roberts DW (2008a) Effects of physical and nutritional stress conditions during mycelial growth on conidial germination speed, adhesion to host cuticle, and virulence of Metarhizium anisopliae, an entomopathogenic fungus. Mycol Res 112:1355–1361

    PubMed  Google Scholar 

  • Rangel DEN, Anderson AJ, Roberts DW (2008b) Evaluating physical and nutritional stress during mycelial growth as inducers of tolerance to heat and UV-B radiation in Metarhizium anisopliae conidia. Mycol Res 112:1362–1372

    PubMed  Google Scholar 

  • Rangel DEN, Dettenmaier SJ, Fernandes EKK, Roberts DW (2010a) Susceptibility of Metarhizium spp. and other entomopathogenic fungi to dodine-based selective media. Biocontrol Sci Technol 20:375–389

    Google Scholar 

  • Rangel DEN, Fernandes EKK, Dettenmaier SJ, Roberts DW (2010b) Thermotolerance of germlings and mycelium of the insect-pathogenic fungus Metarhizium spp. and mycelial recovery after heat stress. J Basic Microbiol 50:344–350

    PubMed  Google Scholar 

  • Rangel DEN, Fernandes EK, Braga GU, Roberts DW (2011) Visible light during mycelial growth and conidiation of Metarhizium robertsii produces conidia with increased stress tolerance. FEMS Microbiol Lett 315:81–86. doi:10.1111/j.1574-6968.2010.02168.x

    CAS  PubMed  Google Scholar 

  • Rangel DEN, Fernandes EKK, Anderson AJ, Roberts DW (2012) Culture of Metarhizium robertsii on salicylic-acid supplemented medium induces increased conidial thermotolerance. Fungal Biol 116:438–442

    CAS  PubMed  Google Scholar 

  • Roberts DW, Leger RJ (2004) Metarhizium spp., cosmopolitan insect-pathogenic fungi: mycological aspects. Adv Appl Microbiol 54:1–70

    CAS  PubMed  Google Scholar 

  • Robinson CH (2001) Cold adaptation in Arctic and Antarctic fungi. New Phytol 151:341–353

    CAS  Google Scholar 

  • Roddam LF, Rath AC (1997) Isolation and characterization of Metarhizium anisopliae and Beauveria bassiana from subantarctic Macquarie Island. J Invertebr Pathol 69:285–288

    Google Scholar 

  • Rodriguez-Romero J, Corrochano LM (2004) The gene for the heat-shock protein HSP100 is induced by blue light and heat-shock in the fungus Phycomyces blakesleeanus. Curr Genet 46:295–303

    CAS  PubMed  Google Scholar 

  • Rodriguez-Romero J, Corrochano LM (2006) Regulation by blue light and heat shock of gene transcription in the fungus Phycomyces: proteins required for photoinduction and mechanism for adaptation to light. Mol Microbiol 61:1049–1059

    CAS  PubMed  Google Scholar 

  • Rúa J, de Castro C, de Arriaga D, García-Armesto MR, Busto F, del Valle P (2014) Stress in Phycomyces blakesleeanus by glucose starvation and acetate growth: response of the antioxidant system and reserve carbohydrates. Microbiol Res 169:788–793. doi:10.1016/j.micres.2013.12.007

    PubMed  Google Scholar 

  • Ruijter GJG, Bax M, Patel H, Flitter SJ, van de Vondervoort PA, de Vries RP, vanKuyk PA, Visser J (2003) Mannitol is required for stress tolerance in Aspergillus niger conidiospores. Eukaryot Cell 2:690–698

    CAS  PubMed Central  PubMed  Google Scholar 

  • Santos MP, Dias LP, Ferreira PC, Pasin LA, Rangel DEN (2011) Cold activity and tolerance of the entomopathogenic fungus Tolypocladium spp. to UV-B irradiation and heat. J Invertebr Pathol 108:209–213. doi:10.1016/j.jip.2011.09.001

    PubMed  Google Scholar 

  • Seibel C, Gremel G, do Nascimento Silva R, Schuster A, Kubicek C, Schmoll M (2009) Light-dependent roles of the G-protein alpha subunit GNA1 of Hypocrea jecorina (anamorph Trichoderma reesei). BMC Biol 7:58

    PubMed Central  PubMed  Google Scholar 

  • Shabana YM, Elwakil MA, Charudattan R (2001) Effect of nutrition and physical factors on mycelial growth and production of pigments and nonchromatic UV-absorbing compounds of Alternaria eichhorniae. J Phytopathol 149:21–27

    Google Scholar 

  • Shang YF, Duan ZB, Huang W, Gao Q, Wang CS (2012) Improving UV resistance and virulence of Beauveria bassiana by genetic engineering with an exogenous tyrosinase gene. J Invertebr Pathol 109:105–109. doi:10.1016/j.jip.2011.10.004

    CAS  PubMed  Google Scholar 

  • Shima J, Hino A, Yamada-Iyo C, Suzuki Y, Nakajima R, Watanabe H, Mori K, Takano H (1999) Stress tolerance in doughs of Saccharomyces cerevisiae trehalase mutants derived from commercial baker’s yeast. Appl Environ Microbiol 65:2841–2846

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shinohara ML, Correa A, Bell-Pedersen D, Dunlap JC, Loros JJ (2002) Neurospora clock-controlled gene 9 (ccg-9) encodes trehalose synthase: circadian regulation of stress responses and development. Eukaryot Cell 1:33–43

    CAS  PubMed Central  PubMed  Google Scholar 

  • Siderius M, Mager WH (1997) General stress response: in search of a common denominator. In: Hohmann S, Mager WH (eds) Yeast stress responses. Springer, Berlin, pp 213–230

    Google Scholar 

  • Siderius M, Rots E, Mager WH (1997) High-osmolarity signalling in Saccharomyces cerevisiae is modulated in a carbon-source-dependent fashion. Microbiology 143:3241–3250

    CAS  PubMed  Google Scholar 

  • Singer MA, Lindquist S (1998) Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell 1:639–648

    CAS  PubMed  Google Scholar 

  • Souza RKF, Azevedo RFF, Lobo AO, Rangel DEN (2014) Conidial water affinity is an important characteristic for thermotolerance in entomopathogenic fungi. Biocontrol Sci Technol 24:448–461. doi:10.1080/09583157.2013.871223

    Google Scholar 

  • Stevenson A, Cray JA, Williams JP, Santos R, Sahay R, Neuenkirchen N, McClure CD, Grant IR, Houghton JDR, Quinn JP, Timson DJ, Patil SV, Singhal RS, Anton J, Dijksterhuis J, Hocking AD, Lievens B, Rangel DEN, Voytek MA, Gunde-Cimerman N, Oren A, Timmis KN, McGenity TJ, Hallsworth JE (2014) Is there a common water-activity limit for the three domains of life? ISME J. doi:10.1038/ismej.2014.219

    PubMed Central  PubMed  Google Scholar 

  • Stevenson A, Hallsworth JE (2014) Water and temperature relations of soil Actinobacteria. Environ Microbiol Rep 6:744–755

    CAS  PubMed  Google Scholar 

  • Stevenson A, Burkhardt J, Cockell CS, Cray JA, Dijksterhuis J, Fox-Powell M, Kee TP, Kminek G, McGenity TJ, Timmis KN, Timson DJ, Voytek MA, Westall F, Yakimov MM, Hallsworth JE (2015) Multiplication of microbes below 0.690 water activity: implications for terrestrial and extraterrestrial life. Environ Microbiol 17:257–277

    PubMed  Google Scholar 

  • Suryawanshi RK, Patil CD, Borase HP, Narkhede CP, Stevenson A, Hallsworth JE, Patil SV (2014) Towards an understanding of bacterial metabolites prodigiosin and violacein and their potential use in commercial sunscreens. Int J Cosmet Sci 37:98–107

    PubMed  Google Scholar 

  • Suzuki S, Bayram OS, Bayram O, Braus GH (2013) conF and conJ contribute to conidia germination and stress response in the filamentous fungus Aspergillus nidulans. Fungal Genet Biol 56:42–53

    CAS  PubMed  Google Scholar 

  • Swartz TE, Tseng TS, Frederickson MA, Paris G, Comerci DJ, Rajashekara G, Kim JG, Mudgett MB, Splitter GA, Ugalde RA, Goldbaum FA, Briggs WR, Bogomolni RA (2007) Blue-light-activated histidine kinases: two-component sensors in bacteria. Science 317:1090–1093

    CAS  PubMed  Google Scholar 

  • Tamerler C, Ullah M, Adlard MW, Keshavarz T (1998) Effect of pH on physiology of Metarhizium anisopliae for production of swainsonine. FEMS Microbiol Lett 168:17–23

    CAS  PubMed  Google Scholar 

  • Teixidó N, Viñas I, Usall J, Magan N (1998) Improving ecological fitness and environmental stress tolerance of the biocontrol yeast Candida sake by manipulation of intracellular sugar alcohol and sugar content. Mycol Res 102:1409–1417

    Google Scholar 

  • Thomas MB, Blanford S (2003) Thermal biology in insect–parasite interactions. Trends Ecol Evol 18:344–350

    Google Scholar 

  • Trollmo C, Andre L, Blomberg A, Adler L (1988) Physiological overlap between osmotolerance and thermotolerance in Saccharomyces cerevisiae. FEMS Microbiol Lett 56:321–326

    CAS  Google Scholar 

  • Tseng MN, Chung PC, Tzean SS (2011) Enhancing the stress tolerance and virulence of an entomopathogen by metabolic engineering of dihydroxynaphthalene melanin biosynthesis genes. Appl Environ Microbiol 77:4508–4519. doi:10.1128/AEM.02033-10

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tseng MN, Chung CL, Tzean SS (2014) Mechanisms relevant to the enhanced virulence of a dihydroxynaphthalene-melanin metabolically engineered entomopathogen. PLoS One 9. doi:10.1371/journal.pone.0090473

  • Vänninen I (1995) Distribution and occurrence of four entomopathogenic fungi in Finland: effect of geographical location, habitat type and soil type. Mycol Res 100:93–101

    Google Scholar 

  • Vega FE, Kaya HK (eds) (2012) Insect pathology, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Vega FE, Goettel MS, Blackwell M, Chandler D, Jackson MA, Keller S, Koike M, Maniania NK, Monzon A, Ownley BH, Pell JK, Rangel DEN, Roy HE (2009) Fungal entomopathogens: new insights on their ecology. Fungal Ecol 2:149–159

    Google Scholar 

  • Verma S, Idnurm A (2013) The Uve1 endonuclease is regulated by the white collar complex to protect Cryptococcus neoformans from UV damage. Plos Genet 9. doi:10.1371/journal.pgen.1003769

  • Verma NC, Singh RK (2001) Stress-inducible DNA repair in Saccharomyces cerevisiae. J Environ Pathol Toxicol Oncol 20:1–7

    CAS  PubMed  Google Scholar 

  • Vitalini MW, de Paula RM, Goldsmith CS, Jones CA, Borkovich KA, Bell-Pedersen D (2007) Circadian rhythmicity mediated by temporal regulation of the activity of p38 MAPK. Proc Natl Acad Sci USA 104:18223–18228. doi:10.1073/pnas.0704900104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wainwright M (1993) Oligotrophic growth of fungi—stress or natural state? In: Jennings DH (ed) Stress tolerance of fungi, vol 10., vol IIMarcel Dekker Inc, New York, pp 127–144

    Google Scholar 

  • Wang C, Feng M-G (2014) Advances in fundamental and applied studies in China of fungal biocontrol agents for use against arthropod pests. Biol Control 68:129–135. doi:10.1016/j.biocontrol.2013.06.017

    Google Scholar 

  • Wang C, Leger RJ (2005) Developmental and transcriptional responses to host and nonhost cuticles by the specific locust pathogen Metarhizium anisopliae var. acridum. Eukaryot Cell 4:937–947

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang C, Hu G, Leger RJ (2005) Differential gene expression by Metarhizium anisopliae growing in root exudate and host (Manduca sexta) cuticle or hemolymph reveals mechanisms of physiological adaptation. Fungal Genet Biol 42:704–718

    CAS  PubMed  Google Scholar 

  • Wang ZL, Lu JD, Feng MG (2012) Primary roles of two dehydrogenases in the mannitol metabolism and multi-stress tolerance of entomopathogenic fungus Beauveria bassiana. Environ Microbiol 14:2139–2150. doi:10.1111/j.1462-2920.2011.02654.x

    CAS  PubMed  Google Scholar 

  • Wang P, Song X, Zhang H (2013) Isolation and characterization of Aschersonia placenta from citrus orchards and its pathogenicity towards Dialeurodes citri (Ashmead). J Invertebr Pathol 112:122–128. doi:10.1016/j.jip.2012.10.005

    PubMed  Google Scholar 

  • Williams JP, Hallsworth JE (2009) Limits of life in hostile environments; no limits to biosphere function? Environ Microbiol 11:3292–3308

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson JW, Ramamurthy R, Porwollik S, McClelland M, Hammond T, Allen P, Ott CM, Pierson DL, Nickerson CA (2002) Microarray analysis identifies Salmonella genes belonging to the low-shear modeled microgravity regulon. Proc Natl Acad Sci USA 99:13807–13812

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wyatt TT, Golovina EA, van Leeuwen MR, Hallsworth JE, Wösten HAB, Dijksterhuis J (2015a) A decrease in bulk water and mannitol and accumulation of trehalose and trehalose- based oligosaccharides define a two-stage maturation process towards extreme stress-resistance in ascospores of Neosartorya fischeri (Aspergillus fischeri). Environ Microbiol 17:383–394

    CAS  PubMed  Google Scholar 

  • Wyatt TT, van Leeuwen MR, Gerwig GJ, Golovina EA, Hoekstra FA, Kuenstner EJ, Palumbo EA, Snyder NL, Visagie C, Verkennis A, Hallsworth JE, Kamerling JP, Wösten HAB, Dijksterhuis J (2015b) Functionality and prevalence of trehalose-based oligosaccharides as novel compatible solutes in ascospores of Neosartorya fischeri (Aspergillus fischeri) and other fungi. Environ Microbiol 17:395–411

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yakimov MM, Lo Cono V, La Spada G, Bortoluzzi G, Messina E, Smedile F, Werner J, Teeling H, Borghini M, Ferrer M, Cray JA, Hallsworth JE, Golyshin PN, Giuliano L (2015) Microbial community of seawater-brine interface of the deep-sea brine Lake Kryos as revealed by recovery of mRNA are active below the chaotropicity limit of life. Environ Microbiol 17:364–382

    CAS  PubMed  Google Scholar 

  • Ying SH, Feng MG (2006) Medium components and culture conditions affect the thermotolerance of aerial conidia of fungal biocontrol agent Beauveria bassiana. Lett Appl Microbiol 43:331–335

    CAS  PubMed  Google Scholar 

  • Yip HY, Rath AC, Koen TB (1992) Characterization of Metarhizium anisopliae isolates from Tasmanian pasture soils and their pathogenicity to redheaded cockchafer (Coleoptera, Scarabaeidae, Adoryphorus couloni). Mycol Res 96:92–96

    Google Scholar 

  • Yu SM, Ramkumar G, Lee YH (2013) Light quality influences the virulence and physiological responses of Colletotrichum acutatum causing anthracnose in pepper plants. J Appl Microbiol 115:509–516. doi:10.1111/jam.12252

    CAS  PubMed  Google Scholar 

  • Zhang Y, Zhao J, Fang W, Zhang J, Luo Z, Zhang M, Fan Y, Pei Y (2009) Mitogen-activated protein kinase hog1 in the entomopathogenic fungus Beauveria bassiana regulates environmental stress responses and virulence to insects. Appl Environ Microbiol 75:3787–3795

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang S, Xia Y, Keyhani NO (2011) Contribution of the gas1 gene of the entomopathogenic fungus Beauveria bassiana, encoding a putative glycosylphosphatidylinositol-anchored beta-1,3-glucanosyltransferase to conidial thermotolerance and virulence. Appl Environ Microbiol 77:2676–2684. doi:10.1128/aem.02747-10

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang L, Wang J, Xie XQ, Keyhani NO, Feng MG, Ying SH (2013) The autophagy gene BbATG5, involved in the formation of the autophagosome, contributes to cell differentiation and growth but is dispensable for pathogenesis in the entomopathogenic fungus Beauveria bassiana. Microbiology 159:243–252. doi:10.1099/mic.0.062646-0

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to express great appreciation to Alene Alder-Rangel who improved the presentation of this manuscript. This work was supported by Grants of the Brazilian National Council for Scientific and Technological Development (CNPq) 473104/2008-3, 478899/2010-6, and PQ 302312/2011-0, and PQ1D 308436/2014-8 for D. E. N. R and to State of São Paulo Research Foundation (FAPESP) #2010/06374-1, 2013/50518-6 for D.E.N.R and #2012/15204-8 for G.U.L.B, and by Cooperative Agreements by D. W. R. with the US Department of Agriculture (USDA-APHIS). This review article was supported in part by a Grant from FAPESP # 2014/01229-4.

Dedication by D.E.N.R. The lead author, Drauzio Eduardo Naretto Rangel, dedicates this work to his father Drausio Taveiros Rangel born in November 26, 1932 and passed away on November 20, 2014 while the author was writing this review. Drausio Taveiros Rangel was born in Cravinhos, State of São Paulo, Brazil, in a very poor family with five children. His father died when he was 5 years old, and the family moved to the city of São Paulo. Drausio studied until the fourth grade, and he then studied carpentry in a vocational school, but made his career in typographical printing industry. In the beginning, he worked as employee, and then through his hard work, he established himself as an owner of a small typographical printing company with at least five employees. He married Maria Hilda Naretto Rangel when he was an employee of a printing company. Drausio and Maria Hilda had two sons. They lived in a small, one-bedroom house belonging to Maria Hilda’s father for 11 years, after which time the success of the printing company enabled rental of a larger family home. When D. E. N. R. was 9 years old and showed an interest in science, Drausio and Maria Hilda gave a small microscope to him, which is still in the author’s office. Three years later, they also gave science kits that were sold weekly inside a foam box at the newspaper stand. At this time (1970s), the author’s father bought weekly issues about science, history, arts, religion, etc. at the newspaper stand and collated these to form several encyclopedias. Despite their lack of formal education, Drausio and Maria Hilda read these with considerable enthusiasm, stimulating similar interest in their sons. They also took care to encourage and support their boys to obtain a university education. By this time (1980s), the printing company had grown to more than 30 employees. The motto of Drausio was do your best to avoid doing it over. Drausio Taveiros Rangel was a man with a happy disposition and kindness of heart who was also responsible and had strong work ethic. D. E. N. R. wishes to express his deepest gratitude to him.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Drauzio E. N. Rangel.

Additional information

Communicated by M. Kupiec.

This article is part of the Special Issue “Fungal Stress Responses”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rangel, D.E.N., Braga, G.U.L., Fernandes, É.K.K. et al. Stress tolerance and virulence of insect-pathogenic fungi are determined by environmental conditions during conidial formation. Curr Genet 61, 383–404 (2015). https://doi.org/10.1007/s00294-015-0477-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-015-0477-y

Keywords

Navigation