Skip to main content
Log in

Transcriptional analysis of Volvox photoreceptors suggests the existence of different cell-type specific light-signaling pathways

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Photosynthetic organisms, e.g., plants including green algae, use a sophisticated light-sensing system, composed of primary photoreceptors and additional downstream signaling components, to monitor changes in the ambient light environment towards adjust their growth and development. Although a variety of cellular processes, e.g., initiation of cleavage division and final cellular differentiation, have been shown to be light-regulated in the green alga Volvox carteri, little is known about the underlying light perception and signaling pathways. This multicellular alga possesses at least 12 photoreceptors, i.e., one phototropin (VcPhot), four cryptochromes (VcCRYa, VcCRYp, VcCRYd1, and VcCRYd2), and seven members of rhodopsin-like photoreceptors (VR1, VChR1, VChR2, VcHKR1, VcHKR2, VcHKR3, and VcHKR4), which display distinct light-dependent chemical processes based on their protein architectures and associated chromophores. Gene expression analyses could show that the transcript levels of some of the photoreceptor genes (e.g., VChR1 and VcHKR1) accumulate during division cleavages, while others (e.g., VcCRYa, VcCRYp, and VcPhot) accumulate during final cellular differentiation. However, the pattern of transcript accumulation changes when the alga switches to the sexual development. Eight photoreceptor genes, e.g., VcPhot, VcCRYp, and VcHKR1, are highly expressed in the somatic cells, while only the animal-type rhodopsin VR1 was found to be highly expressed in the reproductive cells/embryos during both asexual and sexual life cycles. Moreover, accumulation of VChR1 and VcCRYa transcripts is more sensitive to light and changes in response to more than one light quality. Obviously, different regulatory mechanisms underlying gene expression control transcript accumulation of photoreceptors not only during development, but also in a cell-type specific way and in response to various external signals such as light quality. The transcriptional patterns described in this study show that Volvox photoreceptors are mostly expressed in a cell-type specific manner. This gives reason to believe that cell-type specific light-signaling pathways allow differential regulation of cellular and developmental processes in response to the environmental light cues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams CR, Stamer KA, Miller JK, McNally JG, Kirk MM, Kirk DL (1990) Patterns of organellar and nuclear inheritance among progeny of two geographically isolated strains of Volvox carteri. Curr Genet 18:141–153

    Article  CAS  PubMed  Google Scholar 

  • Beel B, Prager K, Spexard M, Sasso S, Weiss D, Muller N, Heinnickel M, Dewez D, Ikoma D, Grossman AR, Kottke T, Mittag M (2012) A flavin binding cryptochrome photoreceptor responds to both blue and red light in Chlamydomonas reinhardtii. Plant Cell 24:2992–3008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berthold P, Tsunoda SP, Ernst OP, Mages W, Gradmann D, Hegemann P (2008) Channelrhodopsin-1 initiates phototaxis and photophobic responses in Chlamydomonas by immediate light-induced depolarization. Plant Cell 20:1665–1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boonyareth M, Saranak J, Pinthong D, Sanvarinda Y, Foster KW (2009) Roles of cyclic AMP in regulation of phototaxis in Chlamydomonas reinhardtii. Biologia 64:1058–1065

    Article  CAS  Google Scholar 

  • Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C, Maumus F, Otillar RP, Rayko E, Salamov A, Vandepoele K, Beszteri B, Gruber A, Heijde M, Katinka M, Mock T, Valentin K, Verret F, Berges JA, Brownlee C, Cadoret JP, Chiovitti A, Choi CJ, Coesel S, De Martino A, Detter JC, Durkin C, Falciatore A, Fournet J, Haruta M, Huysman MJ, Jenkins BD, Jiroutova K, Jorgensen RE, Joubert Y, Kaplan A, Kroger N, Kroth PG, La Roche J, Lindquist E, Lommer M, Martin-Jezequel V, Lopez PJ, Lucas S, Mangogna M, McGinnis K, Medlin LK, Montsant A, Oudot-Le Secq MP, Napoli C, Obornik M, Parker MS, Petit JL, Porcel BM, Poulsen N, Robison M, Rychlewski L, Rynearson TA, Schmutz J, Shapiro H, Siaut M, Stanley M, Sussman MR, Taylor AR, Vardi A, von Dassow P, Vyverman W, Willis A, Wyrwicz LS, Rokhsar DS, Weissenbach J, Armbrust EV, Green BR, Van de Peer Y, Grigoriev IV (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244

    Article  CAS  PubMed  Google Scholar 

  • Brudler R, Hitomi K, Daiyasu H, Toh H, Kucho K, Ishiura M, Kanehisa M, Roberts VA, Todo T, Tainer JA, Getzoff ED (2003) Identification of a new cryptochrome class. Structure, function, and evolution. Mol Cell 11:59–67

    Article  CAS  PubMed  Google Scholar 

  • Cashmore AR, Jarillo JA, Wu YJ, Liu DM (1999) Cryptochromes: blue light receptors for plants and animals. Science 284:760–765

    Article  CAS  PubMed  Google Scholar 

  • Catlett NL, Yoder OC, Turgeon BG (2003) Whole-genome analysis of two-component signal transduction genes in fungal pathogens. Eukaryot Cell 2:1151–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T, Brettel K, Essen LO, van der Horst GT, Batschauer A, Ahmad M (2011) The cryptochromes: blue light photoreceptors in plants and animals. Annu Rev Plant Biol 62:335–364

    Article  CAS  PubMed  Google Scholar 

  • Choi G, Przybylska M, Straus D (1996) Three abundant germ line-specific transcripts in Volvox carteri encode photosynthetic proteins. Curr Genet 30:347–355

    Article  CAS  PubMed  Google Scholar 

  • Danon A, Coll NS, Apel K (2006) Cryptochrome-1-dependent execution of programmed cell death induced by singlet oxygen in Arabidopsis thaliana. Proc Natl Acad Sci 103:17036–17041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deininger W, Kroger P, Hegemann U, Lottspeich F, Hegemann P (1995) Chlamyrhodopsin represents a new type of sensory photoreceptor. EMBO J 14:5849–5858

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ebnet E, Fischer M, Deininger W, Hegemann P (1999) Volvoxrhodopsin, a light-regulated sensory photoreceptor of the spheroidal green alga Volvox carteri. Plant Cell 11:1473–1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finn RD, Mistry J, Schuster-Bockler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R, Eddy SR, Sonnhammer EL, Bateman A (2006) Pfam: clans, web tools and services. Nucleic Acids Res 34:D247–D251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuhrmann M, Stahlberg A, Govorunova E, Rank S, Hegemann P (2001) The abundant retinal protein of the Chlamydomonas eye is not the photoreceptor for phototaxis and photophobic responses. J Cell Sci 114:3857–3863

    CAS  PubMed  Google Scholar 

  • Goodenough UW (1989) Cyclic AMP enhances the sexual agglutinability of Chlamydomonas flagella. J Cell Biol 109:247–252

    Article  CAS  PubMed  Google Scholar 

  • Grossman AR, Lohr M, Im CS (2004) Chlamydomonas reinhardtii in the landscape of pigments. Annu Rev Genet 38:119–173

    Article  CAS  PubMed  Google Scholar 

  • Heyl A, Brault M, Frugier F, Kuderova A, Lindner AC, Motyka V, Rashotte AM, Schwartzenberg KV, Vankova R, Schaller GE (2013) Nomenclature for members of the two-component signaling pathway of plants. Plant Physiol 161:1063–1065

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoops HJ (1997) Motility in the colonial and multicellular Volvocales: structure, function, and evolution. Protoplasma 199:99–112

    Article  Google Scholar 

  • Huang KY, Beck CF (2003) Photoropin is the blue-light receptor that controls multiple steps in the sexual life cycle of the green alga Chlamydomonas reinhardtii. Proc Natl Acad Sci 100:6269–6274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Im CS, Eberhard S, Huang K, Beck CF, Grossman AR (2006) Phototropin involvement in the expression of genes encoding chlorophyll and carotenoid biosynthesis enzymes and LHC apoproteins in Chlamydomonas reinhardtii. Plant J 48:1–16

    Article  CAS  PubMed  Google Scholar 

  • Kami C, Lorrain S, Hornitschek P, Fankhauser C (2010) Light-regulated plant growth and development. Curr Top Dev Biol 91:29–66

    Article  CAS  PubMed  Google Scholar 

  • Kateriya S, Nagel G, Bamberg E, Hegemann P (2004) “Vision” in single-celled algae. News Physiol Sci 19:133–137

    CAS  PubMed  Google Scholar 

  • Kianianmomeni A, Hallmann A (2013) Validation of reference genes for quantitative gene expression studies in Volvox carteri using real-time RT-PCR. Mol Biol Rep 40:6691–6699

    Article  CAS  PubMed  Google Scholar 

  • Kianianmomeni A, Hallmann A (2014) Algal photoreceptors: in vivo functions and potential applications. Planta 239:1–26

    Article  CAS  PubMed  Google Scholar 

  • Kianianmomeni A, Nematollahi G, Hallmann A (2008) A gender-specific retinoblastoma-related protein in Volvox carteri implies a role for the retinoblastoma protein family in sexual development. Plant Cell 20:2399–2419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kianianmomeni A, Stehfest K, Nematollahi G, Hegemann P, Hallmann A (2009) Channelrhodopsins of Volvox carteri are photochromic proteins that are specifically expressed in somatic cells under control of light, temperature, and the sex inducer. Plant Physiol 151:347–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirk D (1998) Volvox: molecular-genetic origins of multicellularity and cellular differentiation. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Kirk DL (2005) A twelve-step program for evolving multicellularity and a division of labor. BioEssays News Rev Mol Cell Dev Biol 27:299–310

    Article  Google Scholar 

  • Kirk MM, Kirk DL (1985) Translational regulation of protein-synthesis, in response to light, at a critical stage of Volvox development. Cell 41:419–428

    Article  CAS  PubMed  Google Scholar 

  • Kirk DL, Kirk MM (1986) Heat shock elicits production of sexual inducer in Volvox. Science 231:51–54

    Article  CAS  PubMed  Google Scholar 

  • Kirk MM, Stark K, Miller SM, Muller W, Taillon BE, Gruber H, Schmitt R, Kirk DL (1999) regA, a Volvox gene that plays a central role in germ-soma differentiation, encodes a novel regulatory protein. Development 126:639–647

    CAS  PubMed  Google Scholar 

  • Kochert G (1981) Sexual pheromones in Volvox development. In: O’Day DH, Horgen PA (eds) Sexual interactions in eukaryotic microbes. Academic Press, New York, pp 73–93

    Chapter  Google Scholar 

  • Kooijman R, Dewildt P, Vandenbriel W, Tan SH, Musgrave A, Vandenende H (1990) Cyclic AMP is one of the intracellular signals during the mating of Chlamydomonas eugametos. Planta 181:529–537

    Article  CAS  PubMed  Google Scholar 

  • Kume K, Zylka MJ, Sriram S, Shearman LP, Weaver DR, Jin X, Maywood ES, Hastings MH, Reppert SM (1999) mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98:193–205

    Article  CAS  PubMed  Google Scholar 

  • Lopez L, Carbone F, Bianco L, Giuliano G, Facella P, Perrotta G (2012) Tomato plants overexpressing cryptochrome 2 reveal altered expression of energy and stress-related gene products in response to diurnal cues. Plant Cell Environ 35:994–1012

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Juez E, Dillon E, Magyar Z, Khan S, Hazeldine S, de Jager SM, Murray JA, Beemster GT, Bogre L, Shanahan H (2008) Distinct light-initiated gene expression and cell cycle programs in the shoot apex and cotyledons of Arabidopsis. Plant Cell 20:947–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luck M, Mathes T, Bruun S, Fudim R, Hagedorn R, Nguyen TM, Kateriya S, Kennis JT, Hildebrandt P, Hegemann P (2012) A photochromic histidine kinase rhodopsin (HKR1) that is bimodally switched by UV and blue light. J Biol Chem 287:40083–40090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma L, Sun N, Liu X, Jiao Y, Zhao H, Deng XW (2005) Organ-specific expression of Arabidopsis genome during development. Plant Physiol 138:80–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran MA, Miller WL (2007) Resourceful heterotrophs make the most of light in the coastal ocean. Nat Rev Microbiol 5:792–800

    Article  CAS  PubMed  Google Scholar 

  • Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM, Bamberg E, Hegemann P (2002) Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296:2395–2398

    Article  CAS  PubMed  Google Scholar 

  • Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci 100:13940–13945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nedelcu AM, Michod RE (2003) Sex as a response to oxidative stress: the effect of antioxidants on sexual induction in a facultatively sexual lineage. Proc R Soc B 270(Suppl. 2):136–139

    Article  Google Scholar 

  • Nematollahi G, Kianianmomeni A, Hallmann A (2006) Quantitative analysis of cell-type specific gene expression in the green alga Volvox carteri. BMC Genom 7:321

    Article  Google Scholar 

  • O’Noil RM (1979) The light requirement for sexual induction of Volvox capensis Rich et Pocock. M. A. Thesis, Univ. of Texas, Austin: pp. 1–56

  • Ozawa S, Nield J, Terao A, Stauber EJ, Hippler M, Koike H, Rochaix JD, Takahashi Y (2009) Biochemical and structural studies of the large Ycf4-photosystem I assembly complex of the green alga Chlamydomonas reinhardtii. Plant Cell 21:2424–2442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasquale SM, Goodenough UW (1987) Cyclic AMP functions as a primary sexual signal in gametes of Chlamydomonas reinhardtii. J Cell Biol 105:2279–2292

    Article  CAS  PubMed  Google Scholar 

  • Piggot PJ, Hilbert DW (2004) Sporulation of Bacillus subtilis. Curr Opin Microbiol 7:579–586

    Article  CAS  PubMed  Google Scholar 

  • Pokorny R, Klar T, Hennecke U, Carell T, Batschauer A, Essen LO (2008) Recognition and repair of UV lesions in loop structures of duplex DNA by DASH-type cryptochrome. Proc Natl Acad Sci 105:21023–21027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prochnik SE, Umen J, Nedelcu AM, Hallmann A, Miller SM, Nishii I, Ferris P, Kuo A, Mitros T, Fritz-Laylin LK, Hellsten U, Chapman J, Simakov O, Rensing SA, Terry A, Pangilinan J, Kapitonov V, Jurka J, Salamov A, Shapiro H, Schmutz J, Grimwood J, Lindquist E, Lucas S, Grigoriev IV, Schmitt R, Kirk D, Rokhsar DS (2010) Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Science 329:223–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quarmby LM (1994) Signal transduction in the sexual life of Chlamydomonas. Plant Mol Biol 26:1271–1287

    Article  CAS  PubMed  Google Scholar 

  • Quarmby LM, Hartzell HC (1994) Dissection of eukaryotic transmembrane signalling using Chlamydomonas. Trends Pharmacol Sci 15:343–349

    Article  CAS  PubMed  Google Scholar 

  • Ragni M, D’Alcala MR (2004) Light as an information carrier underwater. J Plankton Res 26:433–443

    Article  Google Scholar 

  • Reisdorph NA, Small GD (2004) The CPH1 gene of Chlamydomonas reinhardtii encodes two forms of cryptochrome whose levels are controlled by light-induced proteolysis. Plant Physiol 134:1546–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakaguchi H, Iwasa K (1979) Two photophobic responses in Volvox carteri. Plant Cell Physiol 20:909–916

    Google Scholar 

  • Schaller GE, Shiu SH, Armitage JP (2011) Two-component systems and their co-option for eukaryotic signal transduction. Curr Biol 21:R320–R330

    Article  CAS  PubMed  Google Scholar 

  • Sineshchekov OA, Jung KH, Spudich JL (2002) Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii. Proc Natl Acad Sci 99:8689–8694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somers DE, Devlin PF, Kay SA (1998) Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science 282:1488–1490

    Article  CAS  PubMed  Google Scholar 

  • Sommer U, Gliwicz ZM (1986) Long-range vertical migration of Volvox in tropical lake Cahora Bassa (Mozambique). Limnol Oceanogr 31:650–653

    Article  Google Scholar 

  • Stanewsky R, Kaneko M, Emery P, Beretta B, Wager-Smith K, Kay SA, Rosbash M, Hall JC (1998) The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell 95:681–692

    Article  CAS  PubMed  Google Scholar 

  • Starr RC, O’Neil RM, Miller CE (1980) l-Glutamic acid as a mediator of sexual morphogenesis in Volvox capensis. Proc Natl Acad Sci 77:1025–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Yamasaki K, Fujita S, Oda K, Iseki M, Yoshida K, Watanabe M, Daiyasu H, Toh H, Asamizu E, Tabata S, Miura K, Fukuzawa H, Nakamura S, Takahashi T (2003) Archaeal-type rhodopsins in Chlamydomonas: model structure and intracellular localization. Biochem Biophys Res Commun 301:711–717

    Article  CAS  PubMed  Google Scholar 

  • Taminato A, Bagattini R, Gorjao R, Chen G, Kuspa A, Souza GM (2002) Role for YakA, cAMP, and protein kinase A in regulation of stress responses of Dictyostelium discoideum cells. Mol Biol Cell 13:2266–2275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trippens J, Greiner A, Schellwat J, Neukam M, Rottmann T, Lu Y, Kateriya S, Hegemann P, Kreimer G (2012) Phototropin influence on eyespot development and regulation of phototactic behavior in Chlamydomonas reinhardtii. Plant Cell 24:4687–4702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueki N, Matsunaga S, Inouye I, Hallmann A (2010) How 5,000 independent rowers coordinate their strokes in order to row into the sunlight: phototaxis in the multicellular green alga Volvox. BMC Biol 8:103

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L, Renault G, Garreau H, Jacquet M (2004) Stress induces depletion of Cdc25p and decreases the cAMP producing capability in Saccharomyces cerevisiae. Microbiol 150:3383–3391

    Article  CAS  Google Scholar 

  • Zhu H, Sauman I, Yuan Q, Casselman A, Emery-Le M, Emery P, Reppert SM (2008) Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation. PLoS Biol 6:e4

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Halil Kavakli (College of Engineering Chemical and Biological Engineering, Koç University) and Alexey Desnitskiy (Department of Embryology, St. Petersburg State University) for reading the manuscript and Kordula Puls for technical assistance. We also would like to gratefully thank Georg Kreimer (Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg) for providing colored glass filters to perform light-dependent gene expression analysis. This study was funded by a grant (KI 1779/1-1) from the German Research Foundation (DFG) to AK. The funders had no role in study design, data collection, and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Kianianmomeni.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kianianmomeni, A., Hallmann, A. Transcriptional analysis of Volvox photoreceptors suggests the existence of different cell-type specific light-signaling pathways. Curr Genet 61, 3–18 (2015). https://doi.org/10.1007/s00294-014-0440-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-014-0440-3

Keywords

Navigation