Skip to main content
Log in

Crucial role of a dicarboxylic motif in the catalytic center of yeast RNA polymerases

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The catalytic center of yeast RNA polymerase II and III contains an acidic loop borne by their second largest subunit (Rpb2-832GYNQED837, Rpc128-764GYDIED769) and highly conserved in all cellular and viral DNA-dependent RNA polymerases. A site-directed mutagenesis of this dicarboxylic motif reveals its strictly essential character in RNA polymerase III, with a slightly less stringent pattern in RNA polymerase II, where rpb2-E836Q and other substitutions completely prevent growth, whereas rpb2-E836A combines a dominant growth defect with severe lethal sectoring. A mild but systematic increase in RNA polymerase occupancy and a strict dependency on the transcript cleavage factor TFIIS (Dst1) also suggest a slower rate of translocation or higher probability of transcriptional stalling in this mutation. A conserved nucleotide triphosphate funnel domain binds the Rpb2-832GYNQED837 loop by an Rpb2-R1020/Rpb2-D837 salt-bridge. Molecular dynamic simulations reveal a second bridge (Rpb1-K752/Rpb2-E836), which may account for the critical role of the invariant Rpb2-E836. Rpb2-E836 and the funnel domain are not found among the RNA-dependent eukaryotic RNA polymerases and may thus represent a specific adaptation to double-stranded DNA templates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albert B, Leger-Silvestre I, Normand C, Ostermaier MK, Perez-Fernandez J, Panov KI, Zomerdijk JC, Schultz P, Gadal O (2011) RNA polymerase I-specific subunits promote polymerase clustering to enhance the rRNA gene transcription cycle. J Cell Biol 192:277–293

    Article  PubMed  CAS  Google Scholar 

  • Alic N, Ayoub N, Landrieux E, Favry E, Baudouin-Cornu P, Riva M, Carles C (2007) Selectivity and proofreading both contribute significantly to the fidelity of RNA polymerase III transcription. Proc Natl Acad Sci U S A 104:10400–10405

    Article  PubMed  CAS  Google Scholar 

  • Archambault J, Lacroute F, Ruet A, Friesen JD (1992) Genetic interaction between transcription elongation factor TFIIS and RNA polymerase II. Mol Cell Biol 12:4142–4152

    PubMed  CAS  Google Scholar 

  • Cramer P, Armache KJ, Baumli S, Benkert S, Brueckner F, Buchen C, Damsma GE, Dengl S, Geiger SR, Jasiak AJ, Jawhari A, Jennebach S, Kamenski T, Kettenberger H, Kuhn CD, Lehmann E, Leike K, Sydow JF, Vannini A (2008) Structure of eukaryotic RNA polymerases. Annu Rev Biophys 37:337–352

    Article  PubMed  CAS  Google Scholar 

  • Dieci G, Sentenac A (1996) Facilitated recycling pathway for RNA polymerase III. Cell 84:245–252

    Article  PubMed  CAS  Google Scholar 

  • Dieci G, Hermann-Le Denmat S, Lukhtanov E, Thuriaux P, Werner M, Sentenac A (1995) A universally conserved region of the largest subunit participates in the active site of RNA polymerase III. EMBO J 14:3766–3776

    PubMed  CAS  Google Scholar 

  • Ghavi-Helm Y, Michaut M, Acker J, Aude JC, Thuriaux P, Werner M, Soutourina J (2008) Genome-wide location analysis reveals a role of TFIIS in RNA polymerase III transcription. Genes Dev 22:1934–1947

    Article  PubMed  CAS  Google Scholar 

  • Guarino LA, Xu B, Jin J, Dong W (1998) A virus-encoded RNA polymerase purified from baculovirus-infected cells. J Virol 72:7985–7991

    PubMed  CAS  Google Scholar 

  • Indest KJ, Jung CM, Chen HP, Hancock D, Florizone C, Eltis LD, Crocker FH (2010) Functional characterization of pGKT2, a 182-kilobase plasmid containing the xplAB genes, which are involved in the degradation of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine by Gordonia sp. strain KTR9. Appl Environ Microbiol 76:6329–6337

    Article  PubMed  CAS  Google Scholar 

  • Iyer LM, Koonin EV, Aravind L (2003) Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases. BMC Struct Biol 3:1

    Article  PubMed  Google Scholar 

  • Iyer LM, Balaji S, Koonin EV, Aravind L (2006) Evolutionary genomics of nucleo-cytoplasmic large DNA viruses. Virus Res 117:156–184

    Article  PubMed  CAS  Google Scholar 

  • Izban MG, Luse DS (1993) The increment of SII-facilitated transcript cleavage varies dramatically between elongation competent and incompetent RNA polymerase II ternary complexes. J Biol Chem 268:12874–12885

    PubMed  CAS  Google Scholar 

  • Kettenberger H, Armache KJ, Cramer P (2004) Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. Mol Cell 16:955–965

    Article  PubMed  CAS  Google Scholar 

  • Lane WJ, Darst SA (2010) Molecular evolution of multisubunit RNA polymerases: structural analysis. J Mol Biol 395:686–704

    Article  PubMed  CAS  Google Scholar 

  • Langelier MF, Baali D, Trinh V, Greenblatt J, Archambault J, Coulombe B (2005) The highly conserved glutamic acid 791 of Rpb2 is involved in the binding of NTP and Mg(B) in the active center of human RNA polymerase II. Nucleic Acids Res 33:2629–2639

    Article  PubMed  CAS  Google Scholar 

  • Malagon F, Kireeva ML, Shafer BK, Lubkowska L, Kashlev M, Strathern JN (2006) Mutations in the Saccharomyces cerevisiae RPB1 gene conferring hypersensitivity to 6-azauracil. Genetics 172:2201–2209

    Article  PubMed  CAS  Google Scholar 

  • Nudler E (2009) RNA polymerase active center: the molecular engine of transcription. Annu Rev Biochem 78:335–361

    Article  PubMed  CAS  Google Scholar 

  • Reines D, Chamberlin MJ, Kane CM (1989) Transcription elongation factor SII (TFIIS) enables RNA polymerase II to elongate through a block to transcription in a human gene in vitro. J Biol Chem 264:10799–10809

    PubMed  CAS  Google Scholar 

  • Rozenfeld S, Thuriaux P (2001) A genetic look at the active site of RNA polymerase III. EMBO Rep 2:598–603

    Article  PubMed  CAS  Google Scholar 

  • Ruprich-Robert G, Thuriaux P (2010) Non-canonical DNA transcription enzymes and the conservation of two-barrel RNA polymerases. Nucleic Acids Res 38:4559–4569

    Article  PubMed  CAS  Google Scholar 

  • Salgado PS, Koivunen MR, Makeyev EV, Bamford DH, Stuart DI, Grimes JM (2006) The structure of an RNAi polymerase links RNA silencing and transcription. PLoS Biol 4:e434

    Article  PubMed  Google Scholar 

  • Shpakovski GV, Acker J, Wintzerith M, Lacroix JF, Thuriaux P, Vigneron M (1995) Four subunits shared by the three classes of RNA polymerases are functionally interchangeable between Homo sapiens and Saccharomyces cerevisiae. Mol Cell Biol 15:4702–4710

    PubMed  CAS  Google Scholar 

  • Sigurdsson S, Dirac-Svejstrup AB, Svejstrup JQ (2010) Evidence that transcript cleavage is essential for RNA polymerase II transcription and cell viability. Mol Cell 38:202–210

    Article  PubMed  CAS  Google Scholar 

  • Steitz TA (1998) DNA polymerases: structural diversity and common mechanisms. J Biol Chem 274:17395–17398

    Article  Google Scholar 

  • Svejstrup JQ (2010) The interface between transcription and mechanisms maintaining genome integrity. Trends Biochem Sci 35:333–338

    Article  PubMed  CAS  Google Scholar 

  • Thomas JA, Rolando MR, Carroll CA, Shen PS, Belnap DM, Weintraub ST, Serwer P, Hardies SC (2008) Characterization of Pseudomonas chlororaphis myovirus 201varphi2–1 via genomic sequencing, mass spectrometry, and electron microscopy. Virology 376:330–338

    Article  PubMed  CAS  Google Scholar 

  • Treich I, Carles C, Sentenac A, Riva M (1992) Determination of lysine residues affinity labeled in the active site of yeast RNA polymerase II(B) by mutagenesis. Nucleic Acids Res 20:4721–4725

    Article  PubMed  CAS  Google Scholar 

  • Van Mullem V, Wery M, De Bolle X, Vandenhaute J (2003) Construction of a set of Saccharomyces cerevisiae vectors designed for recombinational cloning. Yeast 20:739–746

    Article  PubMed  Google Scholar 

  • Vassylyev DG, Vassylyeva MN, Zhang J, Palangat M, Artsimovitch I, Landick R (2007) Structural basis for substrate loading in bacterial RNA polymerase. Nature 448:163–168

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Jehle JA (2009) Nudiviruses and other large, double-stranded circular DNA viruses of invertebrates: new insights on an old topic. J Invertebr Pathol 101:187–193

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Bushnell DA, Westover KD, Kaplan CD, Kornberg RD (2006) Structural basis of transcription: role of the trigger loop in substrate specificity and catalysis. Cell 127:941–954

    Article  PubMed  CAS  Google Scholar 

  • Werner F, Grohmann D (2010) Evolution of multisubunit RNA polymerases in the three domains of life. Nat Rev Microbiol 9:85–98

    Article  Google Scholar 

  • Werner F, Weinzierl RO (2002) A recombinant RNA polymerase II-like enzyme capable of promoter-specific transcription. Mol Cell 10:635–646

    Article  PubMed  CAS  Google Scholar 

  • Werner M, Thuriaux P, Soutourina J (2009) Structure-function analysis of RNA polymerases I and III. Curr Opin Struct Biol 19:740–745

    Article  PubMed  CAS  Google Scholar 

  • Wery M, Shematorova E, Van Driessche B, Vandenhaute J, Thuriaux P, Van Mullem V (2004) Members of the SAGA and mediator complexes are partners of the transcription elongation factor TFIIS. EMBO J 23:4232–4242

    Article  PubMed  CAS  Google Scholar 

  • Westover KD, Bushnell DA, Kornberg RD (2004) Structural basis of transcription: nucleotide selection by rotation in the RNA polymerase II active center. Cell 119:481–489

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Maria-Pilar Gomez for her help in the Rpb2 mutagenesis and Sylvie Mariotte, Marta Kwapisz, Marina Pinskaya, Elena Shematorova, Julie Soutourina and Michel Werner for useful discussions. This work was supported by the French Agence Nationale de la Recherche (BLAN08-3-309259) and by a fellowship from the Association pour la Recherche sur le Cancer to D.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Thuriaux.

Additional information

Communicated by K. Breunig.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruprich-Robert, G., Wery, M., Després, D. et al. Crucial role of a dicarboxylic motif in the catalytic center of yeast RNA polymerases. Curr Genet 57, 327–334 (2011). https://doi.org/10.1007/s00294-011-0350-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-011-0350-6

Keywords

Navigation