Skip to main content

Advertisement

Log in

Extracellular proteome of Aspergillus terreus grown on different carbon sources

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Extracellular proteins of filamentous fungi are important for biomedical and biotechnological applications. Aspergillus terreus not only comprises an important class of organisms that have significant commercial relevance to the biotechnology industry, but also is an emerging fungal pathogen. However, no information is available on the extracellular proteome of A. terreus. Thus, we analyzed the extracellular proteomes of A. terreus under different culture conditions using sucrose, glucose, or starch as a main carbon source. A total of 82 protein spots including 39 unique proteins was successfully identified by 2-DE and nano-LC-MS/MS. Of these, 12 proteins were detected in the presence of at least two different carbon sources, whereas 16 proteins were unique to sucrose-, 3 to glucose-, and 8 to starch-grown A. terreus. Most of the proteins with known functions are hydrolytic enzymes, such as hydrolases, glycosylases and proteases, some of which include potential allergens. Both oryzin and a predicted protein (ATEG_07481) were the most abundant in all three media. Particularly, oryzin was highly secreted in high concentration sucrose medium. These proteomic data will be useful for studying protein secretion in further detail, and finding fusion partners for the extracellular production of homologous or heterologous proteins in A. terreus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Asif AR, Oellerich M, Amstrong VW, Riemenschneider B, Monod M, Reichard U (2006) Proteome of conidial surface associated proteins of Aspergillus fumigatus reflecting potential vaccine candidates and allergens. J Proteome Res 5(4):954–962

    Article  CAS  PubMed  Google Scholar 

  • Atlas RM, Parks LC (1993) Handbook of Microbiological Media. CRC Press, Boca Raton

    Google Scholar 

  • Baddley JW, Pappas PG, Smith AC, Moser SA (2003) Epidemiology of Aspergillus terreus at a university hospital. J Clin Microbiol 41(12):5525–5529

    Article  PubMed  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijine G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340(4):783–795

    Article  PubMed  Google Scholar 

  • Blum G, Perkhofer S, Haas H, Schrettl M, Würzner R, Dierich MP, Lass-Flörl C (2008) Potential basis for amphotericin B resistance in Aspergillus terreus. Antimicrob Agents Chemother 52(4):1553–1555

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Broekhuijsen MP, Mattern IE, Contreras R, Kinghorn JR, van den Hondel CA (1993) Secretion of heterologous proteins by Aspergillus niger: production of active human interleukin-6 in a protease-deficient mutant by KEX2-like processing of a glucoamylase-hIL6 fusion protein. J Biotechnol 31(2):135–145

    Article  CAS  PubMed  Google Scholar 

  • Brookman JL, Denning DW (2000) Molecular genetics in Aspergillus fumigatus. Curr Opin Microbiol 3(5):468–474

    Article  CAS  PubMed  Google Scholar 

  • Carberry S, Neville CM, Kavanagh KA, Doyle S (2006) Analysis of major intracellular proteins of Aspergillus fumigatus by MALDI mass spectrometry: identification and characterisation of an elongation factor 1B protein with glutathione transferase activity. Biochem Biophys Res Commun 341(4):1096–1104

    Article  CAS  PubMed  Google Scholar 

  • Carlile MJ, Watkinson SC, Gooday GW (2001) The Fungi, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Castón JJ, Linares MJ, Gallego C, Rivero A, Font P, Solís F, Casal M, Torre-Cisneros J (2007) Risk factors for pulmonary Aspergillus terreus infection in patients with positive culture for filamentous fungi. Chest 131(1):230–236

    Article  PubMed  Google Scholar 

  • Chakrabarti SK, Matsumura N, Ranu RS (2000) Purification and characterization of an extracellular alkaline serine protease from Aspergillus terreus (IJIRA 6.2). Curr Microbiol 40(4):239–244

    Article  CAS  PubMed  Google Scholar 

  • Chou H, Lin WL, Tam MF, Wang SR, Han SH, Shen HD (1999) Alkaline serine proteinase is a major allergen of Aspergillus flavus, a prevalent airborne Aspergillus species in the Taipei area. Int Arch Allergy Immunol 119(4):282–290

    Article  CAS  PubMed  Google Scholar 

  • Cutler JE, Deepe GS Jr, Klein BS (2007) Advances in combating fungal diseases: vaccines on the threshold. Nat Rev Microbiol 5(1):13–28

    Article  CAS  PubMed  Google Scholar 

  • Denning DW, O’Driscoll BR, Hogaboam CM, Bowyer P, Niven RM (2006) The link between fungi and severe asthma: a summary of the evidence. Eur Respir J 27(3):615–626

    Article  CAS  PubMed  Google Scholar 

  • Dwiarti L, Yamane K, Yamatani H, Kahar P, Okabe M (2002) Purification and characterization of cis-aconitic acid decarboxylase from Aspergillus terreus TN484–M1. J Biosci Bioeng 94(1):29–33

    CAS  PubMed  Google Scholar 

  • Ellis M (1999) Therapy of Aspergillus fumigatus-related diseases. Contrib Microbiol 2:105–129

    Article  CAS  PubMed  Google Scholar 

  • Gouka RJ, Punt PJ, van den Hondel CA (1997) Efficient production of secreted proteins by Aspergillus: progress, limitations and prospects. Appl Microbiol Biotechnol 47(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Guo JP, Ma Y (2008) High-level expression, purification and characterization of recombinant Aspergillus oryzae alkaline protease in Pichia pastoris. Protein Expr Purif 58(2):301–308

    Article  CAS  PubMed  Google Scholar 

  • Han MJ, Yoon SS, Lee SY (2001) Proteome analysis of metabolically engineered Escherichia coli producing Poly(3-hydroxybutyrate). J Bacteriol 183(1):301–308

    Article  CAS  PubMed  Google Scholar 

  • Han MJ, Lee JW, Lee SY (2005) Enhanced proteome profiling by inhibiting proteolysis with small heat shock proteins. J Proteome Res 4(6):2429–2434

    Article  CAS  PubMed  Google Scholar 

  • Horton P, Park KJ, Obayashi T, Nakai K (2006) Protein Subcellular Localization Prediction with WoLF PSORT, Proceedings of the 4th annual Asia Pacific bioinformatics conference APBC06. Taipei, Taiwan, pp 39–48

    Google Scholar 

  • Kim Y, Nandakumar MP, Marten MR (2007a) Proteome map of Aspergillus nidulans during osmoadaptation. Fungal Genet Biol 44(9):886–895

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Nandakumar MP, Marten MR (2007b) Proteomics of filamentous fungi. Trends Biotechnol 25(9):395–400

    Article  CAS  PubMed  Google Scholar 

  • Kniemeyer O, Lessing F, Scheibner O, Hertweck C, Brakhage AA (2006) Optimisation of a 2-D gel electrophoresis protocol for the human-pathogenic fungus Aspergillus fumigatus. Curr Genet 49(3):178–189

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  CAS  PubMed  Google Scholar 

  • Lai HY, Tam MF, Tang RB, Chou H, Chang CY, Tsai JJ, Shen HD (2002) cDNA cloning and immunological characterization of a newly identified enolase allergen from Penicillium citrinum and Aspergillus fumigatus. Int Arch Allergy Immunol 127(3):181–190

    Article  CAS  PubMed  Google Scholar 

  • Lee JW, Lee SY, Song H, Yoo JS (2006) The proteome of Mannheimia succiniciproducens, a capnophilic rumen bacterium. Proteomics 6(12):3550–3566

    Article  CAS  PubMed  Google Scholar 

  • Maggon K (2005) Best-selling human medicines 2002–2004. Drug Discov Today 10(11):739–742

    Article  PubMed  Google Scholar 

  • Manzoni M, Rollini M (2002) Biosynthesis and biotechnological production of statins by filamentous fungi and application of these cholesterol-lowering drugs. Appl Microbiol Biotechnol 58(5):555–564

    Article  CAS  PubMed  Google Scholar 

  • Maor R, Shirasu K (2005) The arms race continues: battle strategies between plants and fungal pathogens. Curr Opin Microbiol 8(4):399–404

    Article  CAS  PubMed  Google Scholar 

  • Medina ML, Kiernan UA, Francisco WA (2004) Proteomic analysis of rutin-induced secreted proteins from Aspergillus flavus. Fungal Genet Biol 41(3):327–335

    Article  CAS  PubMed  Google Scholar 

  • Medina ML, Haynes PA, Breci L, Francisco WA (2005) Analysis of secreted proteins from Aspergillus flavus. Proteomics 5(12):3153–3161

    Article  CAS  PubMed  Google Scholar 

  • Melin P, Schnurer J, Wagner EG (2002) Proteome analysis of Aspergillus nidulans reveals proteins associated with the response to the antibiotic concanamycin A, produced by Streptomyces species. Mol Genet Genomics 267(6):695–702

    Article  CAS  PubMed  Google Scholar 

  • Monod M, Capoccia S, Léchenne B, Zaugg C, Holdom M, Jousson O (2002) Secreted proteases from pathogenic fungi. Int J Med Microbiol 292(5–6):405–419

    Article  CAS  PubMed  Google Scholar 

  • Nandakumar MP, Cheung A, Marten MR (2006) Proteomic analysis of extracellular proteins from Escherichia coli W3110. J Proteome Res 5(5):1155–1161

    Article  CAS  PubMed  Google Scholar 

  • Nebes VL, Jones EW (1991) Activation of the proteinase B precursor of the yeast Saccharomyces cerevisiae by autocatalysis and by an internal sequence. J Biol Chem 266(34):22851–22857

    CAS  PubMed  Google Scholar 

  • Nevalainen KM, Te’o VS, Bergquist PL (2005) Heterologous protein expression in filamentous fungi. Trends Biotechnol 23(9):468–474

    Article  CAS  PubMed  Google Scholar 

  • Oda K, Kakizono D, Yamada O, Iefuji H, Akita O, Iwashita K (2006) Proteomic analysis of extracellular proteins from Aspergillus oryzae grown under submerged and solid-state culture conditions. Appl Environ Microbiol 72(5):3448–3457

    Article  CAS  PubMed  Google Scholar 

  • Okabe M, Lies D, Kanamasa S, Park EY (2009) Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Appl Microbiol Biotechnol 84(4):597–606

    Article  CAS  PubMed  Google Scholar 

  • Pirt SJ, Whelan WJ (1951) The determination of starch by acid hydrolysis. J Sci Food Agric 2:224–228

    Article  CAS  Google Scholar 

  • Rementeria A, López-Molina N, Ludwig A, Vivanco AB, Bikandi J, Pontón J, Garaizar J (2005) Genes and molecules involved in Aspergillus fumigatus virulence. Rev Iberoam Micol 22(1):1–23

    Article  PubMed  Google Scholar 

  • Rhodes JC, Amlung TW, Miller MS (1990) Isolation and characterization of an elastinolytic proteinase from Aspergillus flavus. Infect Immun 58(8):2529–2534

    CAS  PubMed  Google Scholar 

  • Roberts IN, Jeenes DJ, MacKenzie DA, Wilkinson AP, Sumner IG, Archer DB (1992) Heterologous gene expression in Aspergillus niger: a glucoamylase-porcine pancreatic prophospholipase A2 fusion protein is secreted and processed to yield mature enzyme. Gene 122(1):155–161

    Article  CAS  PubMed  Google Scholar 

  • Segal BH, Walsh TJ (2006) Current approaches to diagnosis and treatment of invasive aspergillosis. Am J Respir Crit Care Med 173(7):707–717

    Article  CAS  PubMed  Google Scholar 

  • Thom C, Raper KB (1945) A manual of the Aspergilli. Williams & Wilkins, Baltimore

    Google Scholar 

  • Tokimatsu I, Kushima H, Iwata A, Hashinaga K, Umeki K, Ohama M, Kohno K, Ishii H, Kishi K, Ogata M, Hiramatsu K, Saikawa T, Kadota J (2007) Invasive pulmonary aspergillosis with hematological malignancy caused by Aspergillus terreus and in vitro susceptibility of A. terreus isolate to micafungin. Intern Med 46(11):775–779

    Article  PubMed  Google Scholar 

  • Tsang A, Butler G, Powlowski J, Panisko EA, Baker SE (2009) Analytical and computational approaches to define the Aspergillus niger secretome. Fungal Genet Biol 46:S153–S160

    Article  CAS  PubMed  Google Scholar 

  • van den Hombergh JP, van de Vondervoort PJ, Fraissinet-Tachet L, Visser J (1997) Aspergillus as a host for heterologous protein production: the problem of proteases. Trends Biotechnol 15(7):256–263

    Article  PubMed  Google Scholar 

  • Walsh TJ, Petraitis V, Petraitiene R, Field-Ridley A, Sutton D, Ghannoum M, Sein T, Schaufele R, Peter J, Bacher J, Casler H, Armstrong D, Espinel-Ingroff A, Rinaldi MG, Lyman CA (2003) Experimental pulmonary aspergillosis due to Aspergillus terreus: pathogenesis and treatment of an emerging fungal pathogen resistant to amphotericin B. J Infect Dis 188(2):305–319

    Article  CAS  PubMed  Google Scholar 

  • Ward M, Wilson LJ, Kodama KH, Rey MW, Berka RM (1990) Improved production of chymosin in Aspergillus by expression as a glucoamylase-chymosin fusion. Biotechnology (NY) 8(5):435–440

    Article  CAS  Google Scholar 

  • Ward PP, Piddington CS, Cunningham GA, Zhou X, Wyatt RD, Conneely OM (1995) A system for production of commercial quantities of human lactoferrin: a broad spectrum natural antibiotic. Biotechnology (NY) 13(5):498–503

    Article  CAS  Google Scholar 

  • Xia XX, Han MJ, Lee SY, Yoo JS (2008) Comparison of the extracellular proteomes of Escherichia coli B and K-12 strains during high cell density cultivation. Proteomics 8(10):2089–2103

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Korean Systems Biology Research Grant (20090065571) of Ministry of Education, Science and Technology (MEST) to S.Y. Lee through the National Research Foundation (NRF) and the Converging Research Center Program from the NRF (2009-0093652) to M.-J. Han. Further supports by the World Class University Program (R32-2008-000-10142-0) of the MEST through the NRF, LG Chem Chair Professorship, IBM SUR program, and Microsoft are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mee-Jung Han or Sang Yup Lee.

Additional information

Communicated by U. Kueck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, MJ., Kim, NJ., Lee, S.Y. et al. Extracellular proteome of Aspergillus terreus grown on different carbon sources. Curr Genet 56, 369–382 (2010). https://doi.org/10.1007/s00294-010-0308-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-010-0308-0

Keywords

Navigation