Skip to main content
Log in

The dual role of autonomously replicating sequences as origins of replication and as silencers

  • Review
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Autonomously replicating sequences (ARSs) in Saccharomyces cerevisiae have been extensively characterized as both origins of DNA replication and as chromatin repressors/silencers. It has been conclusively shown that the origin and the silencer activities of ARS are substantially, but not entirely interchangeable and that they are modulated by position effects and chromatin environment. It remains unclear how these two quite divergent functions of ARS co-exist. This perspective focuses on recent advances, which have shown that slight differences in ARSs can modulate their affinity for origin recognition complex and their activity as silencers or origins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ARS:

Autonomously replicating sequence

ACS:

ARS consensus sequence

SIR:

Silent information regulator

ORC:

Origin recognition complex

MCM:

Mini-chromosome maintenance

pre-RC:

pre-replicative complex

References

  • Blow JJ, Dutta A (2005) Preventing re-replication of chromosomal DNA. Nat Rev Mol Cell Biol 6:476–486. doi:10.1038/nrm1663

    Article  PubMed  CAS  Google Scholar 

  • Broach JR, Li YY, Feldman J, Jayaram M, Abraham J, Nasmyth KA, Hicks JB (1983) Localization and sequence analysis of yeast origins of DNA replication. Cold Spring Harb Symp Quant Biol 47 Pt 2: 1165–1173

    Google Scholar 

  • Casey L, Patterson EE, Muller U, Fox CA (2008) Conversion of a replication origin to a silencer through a pathway shared by a Forkhead transcription factor and an S phase cyclin. Mol Biol Cell 19:608–622. doi:10.1091/mbc.E07-04-0323

    Article  PubMed  CAS  Google Scholar 

  • Chan CS, Tye BK (1980) Autonomously replicating sequences in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 77:6329–6333

    Article  PubMed  CAS  Google Scholar 

  • Chang F, Theis JF, Miller J, Nieduszynski CA, Newlon CS, Weinreich M (2008) Analysis of chromosome III replicators reveals an unusual structure for the ARS318 silencer origin and a conserved WTW sequence within the origin recognition complex binding site. Mol Cell Biol 28:5071–5081. doi:10.1128/MCB.00206-08

    Article  PubMed  CAS  Google Scholar 

  • Chastain PD 2nd, Bowers JL, Lee DG, Bell SP, Griffith JD (2004) Mapping subunit location on the Saccharomyces cerevisiae origin recognition complex free and bound to DNA using a novel nanoscale biopointer. J Biol Chem 279:36354–36362. doi:10.1074/jbc.M403501200

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Speck C, Wendel P, Tang C, Stillman B, Li H (2008) The architecture of the DNA replication origin recognition complex in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 105:10326–10331. doi:10.1073/pnas.0803829105

    Article  PubMed  CAS  Google Scholar 

  • Ehrenhofer-Murray AE, Rivier DH, Rine J (1997) The role of Sas2, an acetyltransferase homologue of Saccharomyces cerevisiae, in silencing and ORC function. Genetics 145:923–934

    PubMed  CAS  Google Scholar 

  • Ehrenhofer-Murray AE, Kamakaka RT, Rine J (1999) A role for the replication proteins PCNA, RF-C, polymerase epsilon and Cdc45 in transcriptional silencing in Saccharomyces cerevisiae. Genetics 153:1171–1182

    PubMed  CAS  Google Scholar 

  • Eisenberg S, Civalier C, Tye BK (1988) Specific interaction between a Saccharomyces cerevisiae protein and a DNA element associated with certain autonomously replicating sequences. Proc Natl Acad Sci USA 85:743–746

    Article  PubMed  CAS  Google Scholar 

  • Feng W, Collingwood D, Boeck ME, Fox LA, Alvino GM, Fangman WL, Raghuraman MK, Brewer BJ (2006) Genomic mapping of single-stranded DNA in hydroxyurea-challenged yeasts identifies origins of replication. Nat Cell Biol 8:148–155. doi:10.1038/ncb1358

    Article  PubMed  CAS  Google Scholar 

  • Fourel G, Revardel E, Koering CE, Gilson E (1999) Cohabitation of insulators and silencing elements in yeast subtelomeric regions. EMBO J 18:2522–2537. doi:10.1093/emboj/18.9.2522

    Article  PubMed  CAS  Google Scholar 

  • Fourel G, Lebrun E, Gilson E (2002) Protosilencers as building blocks for heterochromatin. Bioessays 24:828–835. doi:10.1002/bies.10139

    Article  PubMed  CAS  Google Scholar 

  • Fox CA, Loo S, Dillin A, Rine J (1995) The origin recognition complex has essential functions in transcriptional silencing and chromosomal replication. Genes Dev 9:911–924

    Article  PubMed  CAS  Google Scholar 

  • Huang RY, Kowalski D (1996) Multiple DNA elements in ARS305 determine replication origin activity in a yeast chromosome. Nucleic Acids Res 24:816–823. doi:5e0780[pii]

    Article  PubMed  Google Scholar 

  • Kearsey S (1983) Analysis of sequences conferring autonomous replication in baker’s yeast. EMBO J 2:1571–1575

    PubMed  CAS  Google Scholar 

  • Kimmerly W, Buchman A, Kornberg R, Rine J (1988) Roles of two DNA-binding factors in replication, segregation and transcriptional repression mediated by a yeast silencer. EMBO J 7:2241–2253

    PubMed  CAS  Google Scholar 

  • Lee DG, Bell SP (1997) Architecture of the yeast origin recognition complex bound to origins of DNA replication. Mol Cell Biol 17:7159–7168

    PubMed  CAS  Google Scholar 

  • Lee DG, Makhov AM, Klemm RD, Griffith JD, Bell SP (2000) Regulation of origin recognition complex conformation and ATPase activity: differential effects of single-stranded and double-stranded DNA binding. EMBO J 19:4774–4782. doi:10.1093/emboj/19.17.4774

    Article  PubMed  CAS  Google Scholar 

  • Li R, Yu DS, Tanaka M, Zheng L, Berger SL, Stillman B (1998) Activation of chromosomal DNA replication in Saccharomyces cerevisiae by acidic transcriptional activation domains. Mol Cell Biol 18:1296–1302

    PubMed  CAS  Google Scholar 

  • Liachko I, Tye BK (2009) Mcm10 mediates the interaction between DNA replication and silencing machineries. Genetics 181:379–391. doi:10.1534/genetics.108.099101

    Article  PubMed  CAS  Google Scholar 

  • Marahrens Y, Stillman B (1992) A yeast chromosomal origin of DNA replication defined by multiple functional elements. Science 255:817–823

    Article  PubMed  CAS  Google Scholar 

  • McConnell KH, Muller P, Fox CA (2006) Tolerance of Sir1p/origin recognition complex-dependent silencing for enhanced origin firing at HMRa. Mol Cell Biol 26:1955–1966. doi:10.1128/MCB.26.5.1955-1966.2006

    Article  PubMed  CAS  Google Scholar 

  • McNally FJ, Rine J (1991) A synthetic silencer mediates SIR-dependent functions in Saccharomyces cerevisiae. Mol Cell Biol 11:5648–5659

    PubMed  CAS  Google Scholar 

  • Mizushima T, Takahashi N, Stillman B (2000) Cdc6p modulates the structure and DNA binding activity of the origin recognition complex in vitro. Genes Dev 14:1631–1641

    PubMed  CAS  Google Scholar 

  • Nguyen VQ, Co C, Li JJ (2001) Cyclin-dependent kinases prevent DNA re-replication through multiple mechanisms. Nature 411:1068–1073. doi:10.1038/3508260035082600[pii]

    Article  PubMed  CAS  Google Scholar 

  • Palacios DeBeer MA, Fox CA (1999) A role for a replicator dominance mechanism in silencing. EMBO J 18:3808–3819. doi:10.1093/emboj/18.13.3808

    Article  PubMed  CAS  Google Scholar 

  • Palacios DeBeer MA, Muller U, Fox CA (2003) Differential DNA affinity specifies roles for the origin recognition complex in budding yeast heterochromatin. Genes Dev 17:1817–1822. doi:10.1101/gad.109670317/15/1817

    Article  PubMed  Google Scholar 

  • Pasero P, Bensimon A, Schwob E (2002) Single-molecule analysis reveals clustering and epigenetic regulation of replication origins at the yeast rDNA locus. Genes Dev 16:2479–2484. doi:10.1101/gad.232902

    Article  PubMed  CAS  Google Scholar 

  • Pryde FE, Louis EJ (1999) Limitations of silencing at native yeast telomeres. EMBO J 18:2538–2550. doi:10.1093/emboj/18.9.2538

    Article  PubMed  CAS  Google Scholar 

  • Raghuraman MK, Winzeler EA, Collingwood D, Hunt S, Wodicka L, Conway A, Lockhart DJ, Davis RW, Brewer BJ, Fangman WL (2001) Replication dynamics of the yeast genome. Science 294:115–121. doi:10.1126/science.294.5540.115294/5540/115[pii]

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran L, Burhans DT, Laun P, Wang J, Liang P, Weinberger M, Wissing S, Jarolim S, Suter B, Madeo F, Breitenbach M, Burhans WC (2006) Evidence for ORC-dependent repression of budding yeast genes induced by starvation and other stresses. FEMS Yeast Res 6:763–776. doi:10.1111/j.1567-1364.2006.00077.x

    Article  PubMed  CAS  Google Scholar 

  • Rao H, Stillman B (1995) The origin recognition complex interacts with a bipartite DNA binding site within yeast replicators. Proc Natl Acad Sci USA 92:2224–2228

    Article  PubMed  CAS  Google Scholar 

  • Rehman MA, Fourel G, Mathews A, Ramdin D, Espinosa M, Gilson E, Yankulov K (2006) Differential requirement of DNA replication factors for subtelomeric ARS consensus sequence protosilencers in Saccharomyces cerevisiae. Genetics 174:1801–1810. doi:10.1534/genetics.106.063446

    Article  PubMed  CAS  Google Scholar 

  • Rehman MA, Wang D, Fourel G, Gilson E, Yankulov K (2009) Subtelomeric ACS-containing proto-silencers act as antisilencers in replication factors mutants in Saccharomyces cerevisiae. Mol Biol Cell 20:631–641. doi:10.1091/mbc.E08-01-0099

    Article  PubMed  CAS  Google Scholar 

  • Rusche LN, Kirchmaier AL, Rine J (2003) The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annu Rev Biochem 72:481–516. doi:10.1146/annurev.biochem.72.121801.161547

    Article  PubMed  CAS  Google Scholar 

  • Santocanale C, Diffley JF (1998) A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Nature 395:615–618. doi:10.1038/27001

    Article  PubMed  CAS  Google Scholar 

  • Sharma K, Weinberger M, Huberman JA (2001) Roles for internal and flanking sequences in regulating the activity of mating-type-silencer-associated replication origins in Saccharomyces cerevisiae. Genetics 159:35–45

    PubMed  CAS  Google Scholar 

  • Stillman B (2005) Origin recognition and the chromosome cycle. FEBS Lett 579:877–884. doi:10.1016/j.febslet.2004.12.011

    Article  PubMed  CAS  Google Scholar 

  • Stinchcomb DT, Struhl K, Davis RW (1979) Isolation and characterisation of a yeast chromosomal replicator. Nature 282:39–43

    Article  PubMed  CAS  Google Scholar 

  • Strahl-Bolsinger S, Hecht A, Luo K, Grunstein M (1997) SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast. Genes Dev 11:83–93

    Article  PubMed  CAS  Google Scholar 

  • Vas A, Mok W, Leatherwood J (2001) Control of DNA rereplication via Cdc2 phosphorylation sites in the origin recognition complex. Mol Cell Biol 21:5767–5777

    Article  PubMed  CAS  Google Scholar 

  • Weinreich M, Palacios DeBeer MA, Fox CA (2004) The activities of eukaryotic replication origins in chromatin. Biochim Biophys Acta 1677:142–157. doi:10.1016/j.bbaexp.2003.11.015

    PubMed  CAS  Google Scholar 

  • Wilmes GM, Bell SP (2002) The B2 element of the Saccharomyces cerevisiae ARS1 origin of replication requires specific sequences to facilitate pre-RC formation. Proc Natl Acad Sci USA 99:101–106. doi:10.1073/pnas.012578499

    Article  PubMed  CAS  Google Scholar 

  • Wilmes GM, Archambault V, Austin RJ, Jacobson MD, Bell SP, Cross FR (2004) Interaction of the S-phase cyclin Clb5 with an “RXL” docking sequence in the initiator protein Orc6 provides an origin-localized replication control switch. Genes Dev 18:981–991. doi:10.1101/gad.1202304

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

M.A.R. and K.Y. are supported by a grant from NSERC, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krassimir Yankulov.

Additional information

Communicated by M. Kupiec.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rehman, M.A., Yankulov, K. The dual role of autonomously replicating sequences as origins of replication and as silencers. Curr Genet 55, 357–363 (2009). https://doi.org/10.1007/s00294-009-0265-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-009-0265-7

Keywords

Navigation