Skip to main content
Log in

The telomere-linked helicase (TLH) gene family in Magnaporthe oryzae: revised gene structure reveals a novel TLH-specific protein motif

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Telomere-linked RecQ helicase (TLH) genes have been identified in several fungi, where they occur as small gene families with each member copy residing within ~10 kb of a telomere. Here we describe the characterization of all 11 TLH gene copies in the reference strain of the fungus Magnaporthe oryzae. A consensus gene prediction revealed that the previously reported TLH1 gene is actually a mutated copy, and the full-length gene is almost two times longer. Only four full-length TLH genes were present in the strain that was analyzed, with the remaining copies containing premature stops caused by point mutations, indels, transposon insertions, and a telomere truncation. Interestingly, all of the TLH gene copies possessed numerous mutations indicative of the action of the repeat-induced point mutation process. However, there was evidence of purifying selection indicating maintenance of gene function. Alignment of full-length proteins from M. oryzae, Schizosaccharomyces pombe and M. anisopliae revealed the presence of a novel, highly conserved protein motif which suggests that the telomere-linked helicases have different functions and/or substrates to the RecQ helicases encoded by “internal” genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 213:403–410

    Google Scholar 

  • Bachrati CZ, Hickson ID (2003) RecQ helicases: suppressors of tumorigenesis and premature aging. Biochem J 374:577–606

    Article  PubMed  CAS  Google Scholar 

  • Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2:28–36

    PubMed  CAS  Google Scholar 

  • Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer ELL, Studholme DJ, Yeats C, Eddy SR (2004) The Pfam protein families database. Nucleic Acids Res 32:138–141

    Article  Google Scholar 

  • Baur JA, Zou Y, Shay JW, Wright WE (2001) Telomere position effect in human cells. Science 292:2075–2077

    Article  PubMed  CAS  Google Scholar 

  • Birney E, Clamp M, Durbin R (2004) Genewise and Genomewise. Genome Res 14:988–995

    Article  PubMed  CAS  Google Scholar 

  • Blackburn EH (1990) Telomeres: structure and synthesis. J Biol Chem 265:5919–5921

    PubMed  CAS  Google Scholar 

  • Cambareri EB, Jensen BC, Schabtach E, Selker EU (1989) Repeat-induced G–C to A–T mutations in Neurospora. Science 244:1571–1575

    Article  PubMed  CAS  Google Scholar 

  • Chan CSM, Tye BK (1983) A family of Saccharomyces cerevisiae repetitive autonomously replicating sequences that have very similar genomic environments. J Mol Biol 168:505–523

    Article  PubMed  CAS  Google Scholar 

  • Chao CCT, Ellingboe AH (1991) Selection for mating competence in Magnaporthe grisea pathogenic on rice. Can J Bot 69:2130–2134

    Article  Google Scholar 

  • Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, Thon M, Kulkarni R, Xu JR, Pan H, Read ND, Lee YH, Carbone I, Brown D, Oh YY, Donofrio N, Jeong JS, Soanes DM, Djonovic S, Kolomiets E, Rehmeyer C, Li W, Harding M, Kim S, Lebrun MH, Bohnert H, Coughlan S, Butler J, Calvo S, Ma LJ, Nicol R, Purcell S, Nusbaum C, Galagan JE, Birren BW (2005) The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434:980–986

    Article  PubMed  CAS  Google Scholar 

  • Farman ML, Taura S, Leong SA (1996) The Magnaporthe grisea DNA fingerprinting probe MGR586 contains the 3′ end of an inverted repeat transposon. Mol Gen Genet 251:675–681

    PubMed  CAS  Google Scholar 

  • Gao W, Khang CH, Park S-Y, Lee Y-H, Kang SK (2002) Evolution and organization of a highly dynamic, subtelomeric helicase gene family in the rice blast fungus Magnaporthe grisea. Genetics 162:103–112

    PubMed  CAS  Google Scholar 

  • Gorbalenya AE, Koonin EV (1993) Helicases: amino acid sequence comparisons and structure–function relationships. Curr Biol 3:419–429

    CAS  Google Scholar 

  • Gorbalenya AE, Koonin EV, Donchenko AP, Blinov VM (1989) Two related superfamilies of putative helicases involved in replication, recombination, repair, and expression of DNA and RNA genomes. Nucleic Acids Res 17:4713–4730

    Article  PubMed  CAS  Google Scholar 

  • Gottschling DE, Aparicio OM, Billington BL, Zakian VA (1990) Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 64:751–762

    Article  Google Scholar 

  • Higgins D, Thompson J, Gibson T, Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  Google Scholar 

  • Ikeda K, Nakayashiki H, Kataoka T, Tamba H, Hashimoto Y, Tosa Y, Mayama S (2002) Repeat-induced point mutation (RIP) in Magnaporthe grisea: implications for its sexual cycle in the natural field context. Mol Microbiol 45:1355–1364

    Article  PubMed  CAS  Google Scholar 

  • Inglis PW, Rigden DJ, Mello LV, Louis EJ, Valadares-Inglis MC (2005) Monomorphic subtelomeric DNA in the filamentous fungus, Metarhizium anisopliae, contains a RecQ helicase-like gene. Mol Genet Genomics 274:79–90

    Article  PubMed  CAS  Google Scholar 

  • Li W, Rehmeyer CJ, Staben C, Farman ML (2005) TERMINUS—telomeric end-read mining in unassembled sequences. Bioinformatics 21:1695–1698

    Article  PubMed  CAS  Google Scholar 

  • Louis EJ, Haber JE (1992) The structure and evolution of subtelomeric Y′ repeats in Saccharomyces cerevisiae. Genetics 131:559–574

    PubMed  CAS  Google Scholar 

  • Lukashin A, Borodovsky M (1998) GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res 26:1107–1115

    Article  PubMed  CAS  Google Scholar 

  • Lundblad V, Blackburn EH (1993) An alternative pathway for yeast telomere maintenance rescues est1 senescence. Cell 73:347–360

    Article  PubMed  CAS  Google Scholar 

  • Lundblad V, Szostak JW (1989) A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 57:633–643

    Article  PubMed  CAS  Google Scholar 

  • Mandell JG, Bahler J, Volpe TA, Martienssen RA, Cech TR (2005a) Global expression changes resulting from loss of telomeric DNA in fission yeast. Genome Biol 6:R1.1–R1.15

    Google Scholar 

  • Mandell JG, Goodrich KJ, Bahler J, Cech TR (2005b) Expression of a RecQ helicase homolog affects progression through crisis in fission yeast lacking telomerase. J Biol Chem 280:5249–5257

    Article  PubMed  CAS  Google Scholar 

  • Nakamura TM, Cooper JP, Cech TR (1998) Two modes of survival of fission yeast without telomerase. Science 282:493–496

    Article  PubMed  CAS  Google Scholar 

  • Nakayashiki H, Matsuo H, Chuma I, Ikeda K, Betsuyaku S, Kusaba M, Tosa Y, Mayama S (2001) Pyret, a Ty3/Gypsy retrotransposon in Magnaporthe grisea contains an extra domain between the nucleocapsid and protease domains. Nucleic Acids Res 29:4106–4113

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426

    PubMed  CAS  Google Scholar 

  • Rehmeyer C, Li W, Kusaba M, Kim Y-S, Brown D, Staben C, Dean R, Farman M (2006) Organization of chromosome ends in the rice blast fungus, Magnaporthe oryzae. Nucleic Acids Res 34:4685–4701

    Article  PubMed  CAS  Google Scholar 

  • Salamov AA, Solovyev VV (2000) Ab initio gene finding in Drosophila genomic DNA. Genome Res 10:516–522

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Alonso P, Guzman P (1998) Organization of chromosome ends in Ustilago maydis. RecQ-like helicase motifs at telomeric regions. Genetics 148:1043–1054

    PubMed  CAS  Google Scholar 

  • Selker EU (1990) Premeiotic instability of repeated sequences in Neurospora crassa. Annu Rev Genet 24:579–613

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Teng S-C, Zakian VA (1999) Telomere–telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae. Mol Cell Biol 19:8083–8093

    PubMed  CAS  Google Scholar 

  • Wallrath LL, Elgin SC (1995) Position effect variegation in Drosophila is associated with altered chromatin structure. Genes Dev 9:1263–1277

    Article  PubMed  CAS  Google Scholar 

  • Walmsley RW, Chan CS, Tye BK, Petes TD (1984) Unusual DNA sequences associated with the ends of yeast chromosomes. Nature 310:157–160

    Article  PubMed  CAS  Google Scholar 

  • Yamada M, Hayatsu N, Matsuura A, Ishikawa F (1998) Y′-Help1, a DNA helicase encoded by the yeast subtelomeric Y element, is induced in survivors defective for telomerase. J Biol Chem 273:33360–33366

    Article  PubMed  CAS  Google Scholar 

  • Zeigler RS (1998) Recmbination in Magnaporthe grisea. Annu Rev Phytopathol 36:249–275

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Angela Schoegendorfer for assistance with the statistical analysis. This work was supported by National Science Foundation (NSF) grants MCB 0135462 and MCB 0653930, and an NSF Graduate Research Fellowship to C.J.R. This is Kentucky Agricultural Experiment Station (K.A.E.S.) publication no. 09-12-1 and is published with the permission of the director.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark L. Farman.

Additional information

Communicated by D. Ebbole.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rehmeyer, C.J., Li, W., Kusaba, M. et al. The telomere-linked helicase (TLH) gene family in Magnaporthe oryzae: revised gene structure reveals a novel TLH-specific protein motif. Curr Genet 55, 253–262 (2009). https://doi.org/10.1007/s00294-009-0240-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-009-0240-3

Keywords

Navigation