Skip to main content
Log in

Membrane stress is coupled to a rapid translational control of gene expression in chlorpromazine-treated cells

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Chlorpromazine (CPZ) is a small permeable cationic amphiphilic molecule that inserts into membrane bilayers and binds to anionic lipids such as poly-phosphoinositides (PIs). Since PIs play important roles in many cellular processes, including signaling and membrane trafficking pathways, it has been proposed that CPZ affects cellular growth functions by preventing the recruitment of proteins with specific PI-binding domains. In this study, we have investigated the biological effects of CPZ in the yeast Saccharomyces cerevisiae. We screened a collection of approximately 4,800 gene knockout mutants, and found that mutants defective in membrane trafficking between the late-Golgi and endosomal compartments are highly sensitive to CPZ. Microscopy and transport analyses revealed that CPZ affects membrane structure of organelles, blocks membrane transport and activates the unfolded protein response (UPR). In addition, CPZ-treatment induces phosphorylation of the translation initiation factor (eIF2α), which reduces the general rate of protein synthesis and stimulates the production of Gcn4p, a major transcription factor that is activated in response to environmental stresses. Altogether, our results reveal that membrane stress within the cells rapidly activates an important gene expression program, which is followed by a general inhibition of protein synthesis. Remarkably, the increase of phosphorylated eIF2α and protein synthesis inhibition were also detected in CPZ-treated NIH-3T3 fibroblasts, suggesting the existence of a conserved mechanism of translational regulation that operates during a membrane stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CPZ :

Chlorpromazine

Tm :

Tunicamycin

3-AT :

3-Aminotriazole

UPR :

Unfolded protein response

ER :

Endoplasmic reticulum

PI :

Phosphoinositide

PS :

Phosphatidylserine

PA :

Phosphatidylamine

PE :

Phosphatidylethanolamine

References

  • Ahyayauch H, Goni FM, Bennouna M (2003) pH-dependent effects of chlorpromazine on liposomes and erythrocyte membranes. J Liposome Res 13:147–155

    Article  PubMed  CAS  Google Scholar 

  • Bankaitis VA, Aitken JR, Cleves AE, Dowhan W (1990) An essential role for a phospholipid transfer protein in yeast Golgi function. Nature 347:561–562

    Article  PubMed  CAS  Google Scholar 

  • Beck T, Hall MN (1999) The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402:689–692

    Article  PubMed  CAS  Google Scholar 

  • Cameroni E, De Virgilio C, Deloche O (2006) Phosphatidylinositol 4-phosphate is required for translation initiation in Saccharomyces cerevisiae. J Biol Chem 281:38139–38149

    Article  PubMed  CAS  Google Scholar 

  • Capuano B, Crosby IT, Lloyd EJ (2002) Schizophrenia: genesis, receptorology and current therapeutics. Curr Med Chem 9:521–548

    Article  PubMed  CAS  Google Scholar 

  • Chang HJ, Jesch SA, Gaspar ML, Henry SA (2004) Role of the unfolded protein response pathway in secretory stress and regulation of INO1 expression in Saccharomyces cerevisiae. Genetics 168:1899–1913

    Article  PubMed  CAS  Google Scholar 

  • Chen EJ, Kaiser CA (2003) LST8 negatively regulates amino acid biosynthesis as a component of the TOR pathway. J Cell Biol 161:333–347

    Article  PubMed  CAS  Google Scholar 

  • Chen JY, Brunauer LS, Chu FC, Helsel CM, Gedde MM, Huestis WH (2003) Selective amphipathic nature of chlorpromazine binding to plasma membrane bilayers. Biochim Biophys Acta 1616:95–105

    Article  PubMed  CAS  Google Scholar 

  • Cherkasova VA, Hinnebusch AG (2003) Translational control by TOR and TAP42 through dephosphorylation of eIF2alpha kinase GCN2. Genes Dev 17:859–872

    Article  PubMed  CAS  Google Scholar 

  • Chuang JS, Schekman RW (1996) Differential trafficking and timed localization of two chitin synthase proteins, Chs2p and Chs3p. J Cell Biol 135:597–610

    Article  PubMed  CAS  Google Scholar 

  • Cox JS, Shamu CE, Walter P (1993) Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 73:1197–1206

    Article  PubMed  CAS  Google Scholar 

  • de la Cruz J, Iost I, Kressler D, Linder P (1997) The p20 and Ded1 proteins have antagonistic roles in eIF4E-dependent translation in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 94:5201–5206

    Article  Google Scholar 

  • De Virgilio C, Burckert N, Bell W, Jeno P, Boller T, Wiemken A (1993) Disruption of TPS2, the gene encoding the 100-kDa subunit of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae, causes accumulation of trehalose-6-phosphate and loss of trehalose-6-phosphate phosphatase activity. Eur J Biochem 212:315–323

    Article  PubMed  Google Scholar 

  • Deloche O, de la Cruz J, Kressler D, Doere M, Linder P (2004) A membrane transport defect leads to a rapid attenuation of translation initiation in Saccharomyces cerevisiae. Mol Cell 13:357–366

    Article  PubMed  CAS  Google Scholar 

  • Dever TE (1999) Translation initiation: adept at adapting. Trends Biochem Sci 24:398–403

    Article  PubMed  CAS  Google Scholar 

  • Dever TE, Feng L, Wek RC, Cigan AM, Donahue TF, Hinnebusch AG (1992) Phosphorylation of initiation factor 2 alpha by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Cell 68:585–596

    Article  PubMed  CAS  Google Scholar 

  • Drysdale CM, Duenas E, Jackson BM, Reusser U, Braus GH, Hinnebusch AG (1995) The transcriptional activator GCN4 contains multiple activation domains that are critically dependent on hydrophobic amino acids. Mol Cell Biol 15:1220–1233

    PubMed  CAS  Google Scholar 

  • Dubouloz F, Deloche O, Wanke V, Cameroni E, De Virgilio C (2005) The TOR and EGO protein complexes orchestrate microautophagy in yeast. Mol Cell 19:15–26

    Article  PubMed  CAS  Google Scholar 

  • Efe JA, Plattner F, Hulo N, Kressler D, Emr SD, Deloche O (2005) Yeast Mon2p is a highly conserved protein that functions in the cytoplasm-to-vacuole transport pathway and is required for Golgi homeostasis. J Cell Sci 118:4751–4764

    Article  PubMed  CAS  Google Scholar 

  • Foti M, Audhya A, Emr SD (2001) Sac1 lipid phosphatase and Stt4 phosphatidylinositol 4-kinase regulate a pool of phosphatidylinositol 4-phosphate that functions in the control of the actin cytoskeleton and vacuole morphology. Mol Biol Cell 12:2396–2411

    PubMed  CAS  Google Scholar 

  • Franzusoff A, Lauze E, Howell KE (1992) Immuno-isolation of Sec7p-coated transport vesicles from the yeast secretory pathway. Nature 355:173–175

    Article  PubMed  CAS  Google Scholar 

  • Frey S, Pool M, Seedorf M (2001) Scp160p, an RNA-binding, polysome-associated protein, localizes to the endoplasmic reticulum of Saccharomyces cerevisiae in a microtubule-dependent manner. J Biol Chem 276:15905–159012

    Article  PubMed  CAS  Google Scholar 

  • Frolich KW, Aarbakke GM, Holmsen H (1992) Chlorpromazine increases the turnover of metabolically active phosphoinositides and elevates the steady-state level of phosphatidylinositol-4-phosphate in human platelets. Biochem Pharmacol 44:2013–2020

    Article  PubMed  CAS  Google Scholar 

  • Fuller RS, Sterne RE, Thorner J (1988) Enzymes required for yeast prohormone processing. Annu Rev Physiol 50:345–362

    Article  PubMed  CAS  Google Scholar 

  • Gaynor EC, Emr SD (1997) COPI-independent anterograde transport: cargo-selective ER to Golgi protein transport in yeast COPI mutants. J Cell Biol 136:789–802

    Article  PubMed  CAS  Google Scholar 

  • Guthrie C, Fink GR (1991) Guide to yeast genetics and molecular biology. Methods Enzymol 194:3–21

    Article  Google Scholar 

  • Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D (2000) Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 5:897–904

    Article  PubMed  CAS  Google Scholar 

  • Hinnebusch AG (2005) Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev Microbiol 59:407–450

    Article  PubMed  CAS  Google Scholar 

  • Holcik M, Sonenberg N (2005) Translational control in stress and apoptosis. Nat Rev Mol Cell Biol 6:318–327

    Article  PubMed  CAS  Google Scholar 

  • Huffaker TC, Hoyt MA, Botstein D (1987) Genetic analysis of the yeast cytoskeleton. Annu Rev Genet 21:259–284

    Article  PubMed  CAS  Google Scholar 

  • Julius D, Schekman R, Thorner J (1984) Glycosylation and processing of prepro-alpha-factor through the yeast secretory pathway. Cell 36:309–318

    Article  PubMed  CAS  Google Scholar 

  • Jutila A, Soderlund T, Pakkanen AL, Huttunen M, Kinnunen PK (2001) Comparison of the effects of clozapine, chlorpromazine, and haloperidol on membrane lateral heterogeneity. Chem Phys Lipids 112:151–163

    Article  PubMed  CAS  Google Scholar 

  • Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721

    Article  PubMed  CAS  Google Scholar 

  • Ktistakis NT, Brown HA, Waters MG, Sternweis PC, Roth MG (1996) Evidence that phospholipase D mediates ADP ribosylation factor-dependent formation of Golgi coated vesicles. J Cell Biol 134:295–306

    Article  PubMed  CAS  Google Scholar 

  • Kushnirov VV (2000) Rapid and reliable protein extraction from yeast. Yeast 16:857–860

    Article  PubMed  CAS  Google Scholar 

  • Leber JH, Bernales S, Walter P (2004) IRE1-independent gain control of the unfolded protein response. PLoS Biol 2:E235

    Article  PubMed  CAS  Google Scholar 

  • Mendelsohn BA, Li AM, Vargas CA, Riehman K, Watson A, Fridovich-Keil JL (2003) Genetic and biochemical interactions between SCP160 and EAP1 in yeast. Nucleic Acids Res 31:5838–5847

    Article  PubMed  CAS  Google Scholar 

  • Mizuta K, Warner JR (1994) Continued functioning of the secretory pathway is essential for ribosome synthesis. Mol Cell Biol 14:2493–2502

    PubMed  CAS  Google Scholar 

  • Natarajan K, Meyer MR, Jackson BM, Slade D, Roberts C, Hinnebusch AG, Marton MJ (2001) Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol 21:4347–4368

    Article  PubMed  CAS  Google Scholar 

  • Nierras CR, Warner JR (1999) Protein kinase C enables the regulatory circuit that connects membrane synthesis to ribosome synthesis in Saccharomyces cerevisiae. J Biol Chem 274:13235–13241

    Article  PubMed  CAS  Google Scholar 

  • Novick P, Field C, Schekman R (1980) Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21:205–215

    Article  PubMed  CAS  Google Scholar 

  • Palmer LK, Wolfe D, Keeley JL, Keil RL (2002) Volatile anesthetics affect nutrient availability in yeast. Genetics 161:563–574

    PubMed  CAS  Google Scholar 

  • Patil CK, Li H, Walter P (2004) Gcn4p and novel upstream activating sequences regulate targets of the unfolded protein response. PLoS Biol 2:E246

    Article  PubMed  CAS  Google Scholar 

  • Peters C, Andrews PD, Stark MJ, Cesaro-Tadic S, Glatz A, Podtelejnikov A, Mann M, Mayer A (1999) Control of the terminal step of intracellular membrane fusion by protein phosphatase 1. Science 285:1084–1087

    Article  PubMed  CAS  Google Scholar 

  • Raucher D, Sheetz MP (2001) Phospholipase C activation by anesthetics decreases membrane–cytoskeleton adhesion. J Cell Sci 114:3759–3766

    PubMed  CAS  Google Scholar 

  • Raught B, Peiretti F, Gingras AC, Livingstone M, Shahbazian D, Mayeur GL, Polakiewicz RD, Sonenberg N, Hershey JW (2004) Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases. Embo J 23:1761–1769

    Article  PubMed  CAS  Google Scholar 

  • Rieder SE, Banta LM, Kohrer K, McCaffery JM, Emr SD (1996) Multilamellar endosome-like compartment accumulates in the yeast vps28 vacuolar protein sorting mutant. Mol Biol Cell 7:985–999

    PubMed  CAS  Google Scholar 

  • Robinson JS, Klionsky DJ, Banta LM, Emr SD (1988) Protein sorting in Saccharomyces cerevisiae: isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases. Mol Cell Biol 8:4936–4948

    PubMed  CAS  Google Scholar 

  • Rose MD, Winston F, Hieter P (1988) Laboratory course manual for method in yeast genetics. Cold Spring Habor Laboratory, New York

  • Rossanese OW, Reinke CA, Bevis BJ, Hammond AT, Sears IB, O’Connor J, Glick BS (2001) A role for actin, Cdc1p, and Myo2p in the inheritance of late Golgi elements in Saccharomyces cerevisiae. J Cell Biol 153:47–62

    Article  PubMed  CAS  Google Scholar 

  • Rothman JE, Wieland FT (1996) Protein sorting by transport vesicles. Science 272:227–234

    Article  PubMed  CAS  Google Scholar 

  • Russo P, Kalkkinen N, Sareneva H, Paakkola J, Makarow M (1992) A heat shock gene from Saccharomyces cerevisiae encoding a secretory glycoprotein. Proc Natl Acad Sci USA 89:3671–3675

    Article  PubMed  CAS  Google Scholar 

  • Schorr M, Then A, Tahirovic S, Hug N, Mayinger P (2001) The phosphoinositide phosphatase Sac1p controls trafficking of the yeast Chs3p chitin synthase. Curr Biol 11:1421–1426

    Article  PubMed  CAS  Google Scholar 

  • Seeger M, Payne GS (1992) Selective and immediate effects of clathrin heavy chain mutations on Golgi membrane protein retention in Saccharomyces cerevisiae. J Cell Biol 118:531–540

    Article  PubMed  CAS  Google Scholar 

  • Sheetz MP, Singer SJ (1974) Biological membranes as bilayer couples. A molecular mechanism of drug–erythrocyte interactions. Proc Natl Acad Sci USA 71:4457–4461

    Article  PubMed  CAS  Google Scholar 

  • Steffensen L, Pedersen PA (2006) Heterologous expression of membrane and soluble proteins derepresses GCN4 mRNA translation in the yeast Saccharomyces cerevisiae. Eukaryot Cell 5:248–261

    Article  PubMed  CAS  Google Scholar 

  • Stevens TH, Rothman JH, Payne GS, Schekman R (1986) Gene dosage-dependent secretion of yeast vacuolar carboxypeptidase Y. J Cell Biol 102:1551–1557

    Article  PubMed  CAS  Google Scholar 

  • Trichard C, Paillere-Martinot ML, Attar-Levy D, Recassens C, Monnet F, Martinot JL (1998) Binding of antipsychotic drugs to cortical 5-HT2A receptors: a PET study of chlorpromazine, clozapine, and amisulpride in schizophrenic patients. Am J Psychiatr 155:505–508

    PubMed  CAS  Google Scholar 

  • Wang LH, Rothberg KG, Anderson RG (1993) Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J Cell Biol 123:1107–1117

    Article  PubMed  CAS  Google Scholar 

  • Wek RC, Cannon JF, Dever TE, Hinnebusch AG (1992) Truncated protein phosphatase GLC7 restores translational activation of GCN4 expression in yeast mutants defective for the eIF-2 alpha kinase GCN2. Mol Cell Biol 12:5700–5710

    PubMed  CAS  Google Scholar 

  • Zhou M, Schekman R (1999) The engagement of Sec61p in the ER dislocation process. Mol Cell 4:925–34

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are extremely grateful for continuous support from Costa Georgopoulos. We thank S. Emr, T. R. Graham, R. Schekman, A. Hinnebusch and T. Dever for providing strains, plasmids and antibodies. We also thank D. Ang for a critical reading of the manuscript and the PFMU at the Geneva Medical Faculty for access to electron microscope and ancillary equipments. This work was supported by grants from the Swiss National Science Foundation and the Canton of Geneva to C. Georgopoulos (FN-31-654039), M.F. (FN-3100A0-104489), PL (FN-3100A0-105894/1) and CDV (PP00A-106754/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Deloche.

Additional information

Communicated by Gerhard Braus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Filippi, L., Fournier, M., Cameroni, E. et al. Membrane stress is coupled to a rapid translational control of gene expression in chlorpromazine-treated cells. Curr Genet 52, 171–185 (2007). https://doi.org/10.1007/s00294-007-0151-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-007-0151-0

Keywords

Navigation