Skip to main content
Log in

Orthologs and paralogs of regA, a master cell-type regulatory gene in Volvox carteri

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The multicellular green alga Volvox carteri forma nagariensis has only two cell types: terminally differentiated somatic cells and reproductive cells. The regA gene maintains the terminally differentiated state of the somatic cells, apparently by repressing transcription of genes required for chloroplast biogenesis and thereby preventing cell growth. Because the RegA protein sequence bore no obvious motifs, we are attempting to identify regions of functional importance by searching for strongly conserved domains in RegA orthologs. Here we report the cloning and characterization of regA from the most closely related known taxon, V. carteri f. kawasakiensis. Given the closeness of the relationship between these two formas, their regA genes are surprisingly different: they differ in the number of introns and by several lengthy indels, and they encode proteins that are only 80% identical. We also serendipitously discovered a paralogous gene immediately upstream of each regA locus. The two regA genes, both upstream paralogs and several genes in Chlamydomonas (the closest unicellular relative of Volvox) encode a conserved region (the VARL domain) that contains what appears to be a DNA-binding SAND domain. This discovery has opened up a new avenue for exploring how regA and the terminally differentiated state that it controls evolved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bottomley MJ, Collard MW, Huggenvik JI, Liu Z, Gibson TJ, Sattler M (2001) The SAND domain structure defines a novel DNA-binding fold in transcriptional regulation. Nat Struct Biol 8:626–633

    Article  PubMed  CAS  Google Scholar 

  • Brendel V, Bucher P, Nourbakhsh IR, Blaisdell BE, Karlin S (1992) Methods and algorithms for statistical analysis of protein sequences. Proc Natl Acad Sci USA 89:2002–2006

    Article  PubMed  CAS  Google Scholar 

  • Caburet S, Cocquet J, Vaiman D, Veitia RA (2005) Coding repeats and evolutionary agility. Bioessays 27:581–587

    Article  PubMed  CAS  Google Scholar 

  • Carles CC, Choffnes-Inada D, Reville K, Lertpiriyapong K, Fletcher JC (2005) ULTRAPETALA1 encodes a SAND domain putative transcriptional regulator that controls shoot and floral meristem activity in Arabidopsis. Development 132:897–911

    Article  PubMed  CAS  Google Scholar 

  • Cheng Q, Fowler R, Tam LW, Edwards L, Miller SM (2003) The role of GlsA in the evolution of asymmetric cell division in the green alga Volvox carteri. Dev Genes Evol 213:328–335

    Article  PubMed  CAS  Google Scholar 

  • Chenna R, et al (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31:3497–3500

    Article  PubMed  CAS  Google Scholar 

  • Coleman AW (1999) Phylogenetic analysis of Volvocacae for comparative genetic studies. Proc Natl Acad Sci USA 96:13892–13897

    Article  PubMed  CAS  Google Scholar 

  • Comeron JM (1999) K-Estimator: calculation of the number of nucleotide substitutions per site and the confidence intervals. Bioinformatics 15:763–764

    Article  PubMed  CAS  Google Scholar 

  • Duncan L, Bouckaert K, Yeh F, Kirk DL (2002) kangaroo, a mobile element from Volvox carteri, is a member of a newly recognized third class of retrotransposons. Genetics 162:1617–1630

    PubMed  CAS  Google Scholar 

  • Fabry S, Jacobsen A, Huber H, Palme K, Schmitt R (1993) Structure, expression, and phylogenetic relationships of a family of ypt genes encoding small G-proteins in the green alga Volvox carteri. Curr Genet 24:229–240

    Article  PubMed  CAS  Google Scholar 

  • Ferris PJ, Pavlovic C, Fabry S, Goodenough UW (1997) Rapid evolution of sex-related genes in Chlamydomonas. Proc Natl Acad Sci USA 94:8634–8639

    Article  PubMed  CAS  Google Scholar 

  • Hall B (2004) Phylogenetic trees made easy: a how-to manual. 2nd edn. Sinauer Associates, Inc., Sunderland, MA

    Google Scholar 

  • Harper JF, Huson KS, Kirk DL (1987) Use of repetitive sequences to identify DNA polymorphisms linked to regA, a developmentally important locus in Volvox. Genes Dev 1:573–584

    Article  PubMed  CAS  Google Scholar 

  • Harper JF, Mages W (1988) Organization and structure of Volvox beta-tubulin genes. Mol Gen Genet 213:315–324

    Article  PubMed  CAS  Google Scholar 

  • Huskey RJ, Griffin BE (1979) Genetic control of somatic cell differentiation in Volvox. Analysis of somatic regenerator mutants. Dev Biol 72:226–235

    Article  PubMed  CAS  Google Scholar 

  • Karlin S, Brocchieri L, Bergman A, Mrazek J, Gentles AJ (2002) Amino acid runs in eukaryotic proteomes and disease associations. Proc Natl Acad Sci USA 99:333–338

    Article  PubMed  CAS  Google Scholar 

  • Kirk D (1998) Volvox: molecular-genetic origins of multicellularity and cellular differentiation. Cambridge University Press, Cambridge

    Google Scholar 

  • Kirk DL (1999) Evolution of multicellularity in the volvocine algae. Curr Opin Plant Biol 2:496–501

    Article  PubMed  CAS  Google Scholar 

  • Kirk DL (2005) A twelve-step program for evolving multicellularity and a division of labor. Bioessays 27:299–310

    Article  PubMed  Google Scholar 

  • Kirk DL, Kirk MM (1983) Protein synthetic patterns during the asexual life cycle of Volvox carteri. Dev Biol 96:493–506

    Article  PubMed  CAS  Google Scholar 

  • Kirk MM, Kirk DL (1985) Translational regulation of protein synthesis, in response to light, at a critical stage of Volvox development. Cell 41:419–428

    Article  PubMed  CAS  Google Scholar 

  • Kirk MM, et al (1999) regA, a Volvox gene that plays a central role in germ-soma differentiation, encodes a novel regulatory protein. Development 126:639–647

    PubMed  CAS  Google Scholar 

  • Kropat J, von Gromoff ED, Muller FW, Beck CF (1995) Heat shock and light activation of a Chlamydomonas HSP70 gene are mediated by independent regulatory pathways. Mol Gen Genet 248:727–734

    Article  PubMed  CAS  Google Scholar 

  • Li WH, Wu CI, Luo CC (1985) A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol Biol Evol 2:150–174

    PubMed  Google Scholar 

  • Liss M, Kirk DL, Beyser K, Fabry S (1997) Intron sequences provide a tool for high-resolution phylogenetic analysis of volvocine algae. Curr Genet 31:214–227

    Article  PubMed  CAS  Google Scholar 

  • Meissner M, Stark K, Cresnar B, Kirk DL, Schmitt R (1999) Volvox germline-specific genes that are putative targets of RegA repression encode chloroplast proteins. Curr Genet 36:363–370

    Article  PubMed  CAS  Google Scholar 

  • Miller SM, Kirk DL (1999) glsA, a Volvox gene required for asymmetric division and germ cell specification, encodes a chaperone-like protein. Development 126:649–658

    PubMed  CAS  Google Scholar 

  • Nishii I, Ogihara S, Kirk DL (2003) A kinesin, invA, plays an essential role in Volvox morphogenesis. Cell 113:743–753

    Article  PubMed  CAS  Google Scholar 

  • Nozaki H (1988) Morphology, sexual reproduction and taxonomy of Volvox carteri f. kawasakiensis f. nov. (Chlorophyta) from Japan. Phycologia 27:209–220

    Google Scholar 

  • Nozaki H (2003) Origin and evolution of the genera Pleodorina and Volvox (Volvocales). Biologia (Bratislava) 58:425–431

    CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Press, Cold Spring Harbor, NY

    Google Scholar 

  • Stark K, Kirk DL, Schmitt R (2001) Two enhancers and one silencer located in the introns of regA control somatic cell differentiation in Volvox carteri. Genes Dev 15:1449–1460

    Article  PubMed  CAS  Google Scholar 

  • Starr RC (1969) Structure, reproduction and differentiation in Volvox carteri f. nagariensis IYENGAR, strains HK9 and HK10. Arch Protistenkd 111:204–222

    Google Scholar 

  • Starr RC (1970) Control of differentiation in Volvox. Symp Soc Dev Biol 29:59–100

    PubMed  CAS  Google Scholar 

  • Surdo PL, Bottomley MJ, Sattler M, Scheffzek K (2003) Crystal structure and nuclear magnetic resonance analyses of the SAND domain from glucocorticoid modulatory element binding protein-1 reveals deoxyribonucleic acid and zinc binding regions. Mol Endocrinol 17:1283–1295

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Jennifer Brisson, Christina Tuskey, Kristine Bouckaert and Stephanie Buckley for valuable help in various stages of this project and Greg Robertson for helpful comments, and Hisayoshi Nozaki for providing us with a culture of f. kawasakiensis. LD was a Jane Coffin Childs Post-Doctoral Fellow. Support to AH was provided by an NIGMS Initiative for Minority Student Development Grant (R25-GM55036) and Procter and Gamble. This work was supported by grants IBN-9904739 and IBN-0131565 from the National Science Foundation to DLK and grant IBN-0077535 from the National Science Foundation to SMM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Kirk.

Additional information

Communicated by F.-A. Wollman

Nucleotide sequence data reported here are available in the DDBJ/EMBL/GenBank databases under the accession numbers DQ247963 & AF106962

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duncan, L., Nishii, I., Howard, A. et al. Orthologs and paralogs of regA, a master cell-type regulatory gene in Volvox carteri . Curr Genet 50, 61–72 (2006). https://doi.org/10.1007/s00294-006-0071-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-006-0071-4

Keywords

Navigation