Skip to main content
Log in

Multiple genetic and biochemical interactions of Brr2, Prp8, Prp31, Prp1 and Prp4 kinase suggest a function in the control of the activation of spliceosomes in Schizosaccharomyces pombe

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The spliceosomal component Prp1 (U5-102 kD) is found in Schizosaccharomyces pombe, a physiological substrate of Prp4 kinase. Here, we identify, spp41-1, a previously isolated extragenic suppressor of Prp4 kinase. The gene encodes an ATP-dependent RNA helicase homologous to the splicing factor Brr2 of Saccharomyces cerevisiae and U5-200 kD of mammalia. The suppressor allele, spp41-1, interacts genetically with alleles of prp1. We show that Prp1 and Brr2 are complexed in vivo with spliceosomal particles containing the five snRNAs U1, U2, U5, and base-paired U4/U6. Prp1 was found exclusively in small ribonucleoprotein particle (snRNP) complexes sedimenting in the range of 30S–60S, whereas Brr2 was also found sedimenting lower than 30S and free of snRNAs. Moreover, we find that the splicing factor Prp31 is complexed with Prp1 in the same spliceosomal particles containing the five snRNAs. These data indicate that in fission yeast spliceosomal particles larger than 30S exist, which can be considered as pre-catalytic spliceosomes. In addition, we show that S. pombe cells lacking Prp1 still contain these large pre-catalytic spliceosomal particles associated with Prp31. These data are consistent with the notion that in fission yeast phosphorylation of Prp1 by Prp4 kinase is involved in the activation of pre-catalytic spliceosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abovich N, Legrain P, Rosbash M (1990) The yeast PRP6 gene encodes a U4/U6 small nuclear ribonucleoprotein particle (snRNP) protein, and the PRP9 gene encodes a protein required for U2 snRNP binding. Mol Cell Biol 10:6417–6425

    PubMed  CAS  Google Scholar 

  • Alahari SK, Schmidt H, Käufer NF (1993) The fission yeast prp4 + gene involved in pre-mRNA splicing codes for a predicted serine/threonine kinase and is essential for growth. Nucleic Acids Res 21:4079–4083

    Article  PubMed  CAS  Google Scholar 

  • Basi G, Schmid E, Maundrell K (1993) TATAbox mutations in the Schizosaccharomyces pombe nmt promoter affect transcription start point or thiamine repressibility. Gene 123:131–136

    Article  PubMed  CAS  Google Scholar 

  • Bishop DT, McDonald WH, Gould KL, Forsburg SL (2000) Isolation of an essential Schizosaccharomyces pombe gene, prp31 +, that links splicing and meiosis. Nucleic Acids Res 28:2214–2220

    Article  PubMed  CAS  Google Scholar 

  • Brow DA (2002) Allosteric cascade of spliceosome activation. Annu Rev Genet 36:333–360

    Article  PubMed  CAS  Google Scholar 

  • Burge CB, Tuschl T, Sharp PA (1999) Splicing of precursors to mRNAs by the spliceosomes. In: Gesteland RF, Cech TR, Atkins JF (eds) RNA World II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 525–560

    Google Scholar 

  • Carnahan RH, Feoktistova A, Ren L, Niessen S, Yates III JR, Gould KL (2005) Dim1p is required for efficient splicing and export of mRNA encoding Lid1p, a component of the fission yeast anaphase-promoting complex. Eukaryotic Cell 4:577–587

    Article  PubMed  CAS  Google Scholar 

  • Chan S-P, Kao D, Tsai W-Y, Cheng S-C (2003) The Prp19p-associated complex in spliceosome activation. Science 302:279–282

    Article  PubMed  CAS  Google Scholar 

  • Collins CA, Guthrie C (2000) The question remains: is the spliceosome a ribozyme? Nat Struct Biol 7:850–854

    Article  PubMed  CAS  Google Scholar 

  • Dellaire G, Makarov EM, Cowger J, Longman D, Sutherland HGE, Lührmann R, Torchia J, Bickmore WA (2002) Mammalian PRP4 kinase copurifies and interacts with components of both the U5 snRNP and the N-CoR deacetylase complexes. Mol Cell Biol 22:5141–5156

    Article  PubMed  CAS  Google Scholar 

  • Galisson F, Legrain P (1993) The biochemical defects of prp4-1 and prp6-1 yeast splicing mutants reveal that the PRP6 protein is required for the accumulation of the [U4/U6.U5] tri-snRNP. Nucleic Acids Res 21:1555–1562

    Article  PubMed  CAS  Google Scholar 

  • Groß T, Lützelberger M, Wiegmann H, Klingenhoff A, Shenoy S, Käufer NF (1997) Functional analysis of the fission yeast Prp4p protein kinase involved in pre-mRNA splicing and isolation of a putative mammalian homologue. Nucleic Acids Res 25:1028–1035

    Article  PubMed  Google Scholar 

  • Gutz H, Heslot H, Leupold U, Loprieno N (1974) Schizosaccharomyces pombe. In: King RC (ed) Handbook of genetics, vol 1. Plenum Press, New York, pp 395–446

  • Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    PubMed  CAS  Google Scholar 

  • Johnson TL, Abelson J (2001) Characterization of U4 and U6 interactions with the 5′ splice site using a S. cerevisiae in vitro trans-splicing system. Genes Dev 15:1957–1970

    Article  PubMed  CAS  Google Scholar 

  • Kojima T, Zama T, Wada K, Onogi H, Hagiwara M (2001) Cloning of human PRP4 reveals interaction with Clk1. J Biol Chem 276:32247–32256

    Article  PubMed  CAS  Google Scholar 

  • Kuhn AN, Brow DA (2000) Suppressors of a cold-sensitive mutation in yeast U4 define five domains in the splicing factor Prp8 that influence spliceosome activation. Genetics 155:1667–1682

    PubMed  CAS  Google Scholar 

  • Kuhn AN, Käufer NF (2003) Pre-mRNA splicing in Schizosaccharomyces pombe; regulatory role of a kinase conserved from fission yeast to mammals. Curr Genet 42:241–251

    PubMed  CAS  Google Scholar 

  • Kuhn AN, Reichl EM, Brow DA (2002) Distinct domains of splicing factor Prp8 mediate different aspects of spliceosome activation. Proc Natl Acad Sci USA 99:9145–9149

    Article  PubMed  CAS  Google Scholar 

  • Laggerbauer B, Achsel T, Lührmann R (1998) The human U5-200kD DEXH-box protein unwinds U4/U6 RNA duplices in vitro. Proc Natl Acad Sci USA 95:4188–4192

    Article  PubMed  CAS  Google Scholar 

  • Legrain P, Choulika A (1990) The molecular characterization of PRP6 and PRP9 yeast genes reveals a new cysteine/histidine motif common to several splicing factors. EMBO J 9:2775–2781

    PubMed  CAS  Google Scholar 

  • Li Z, Brow DA (1993) A rapid assay for quantitative detection of specific RNAs. Nucleic Acids Res 21:4645–4646

    Article  PubMed  CAS  Google Scholar 

  • Makarov EM, Makarova OV, Achsel T, Lührmann R (2000) The human homologue of the yeast splicing factor Prp6p contains multiple TPR elements and is stably associated with the U5 snRNP via protein–protein interactions. J Mol Biol 298:567–575

    Article  PubMed  CAS  Google Scholar 

  • Makarov EM, Makarova OV, Urlaub H, Gentzel M, Will CL, Wilm M, Lührmann R (2002) Small nuclear ribonucleoprotein remodeling during catalytic activation of the spliceosome. Science 298:2205–2208

    Article  PubMed  CAS  Google Scholar 

  • Makarova OV, Makarov EM, Liu S, Vornlochner H-P, Lührmann R (2002) Protein 61K, encoded by a gene (PRPF31) linked to autosomal dominant retinitis pigmentosa, is required for U4/U6.U5 tri-snRNP formation and pre-mRNA splicing. EMBO J 21:1148–1157

    Article  PubMed  CAS  Google Scholar 

  • Makarova OV, Makarov EM, Urlaub H, Will CL, Gentzel M, Wilm M, Lührmann R (2004) A subset of human 35S U5 proteins, including Prp19, function prior to catalytic step 1 of splicing. EMBO J 23:2381–2391

    Article  PubMed  CAS  Google Scholar 

  • Malca H, Shomron N, Ast G (2003) The U1 snRNP base pairs with the 5′ splice site within a penta-snRNP complex. Mol Cell Biol 23:3442–3455

    Article  PubMed  CAS  Google Scholar 

  • Maroney PA, Romfo CM, Nilsen TW (2000) Functional recognition of 5′ splice site by U4/U6.U5 tri-snRNP defines a novel ATP-dependent step in early spliceosome assembly. Mol Cell 6:317–328

    Article  PubMed  CAS  Google Scholar 

  • McDonald WH, Ohi R, Smelkova N, Frendewey D, Gould KL (1999) Myb-related fission yeast Cdc5p is a component of a 40S snRNP-containing complex and is essential for pre-mRNA splicing. Mol Cell Biol 19:5352–5362

    PubMed  CAS  Google Scholar 

  • Moreno S, Klar A, Nurse P (1991) Molecular and genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol 194:795–823

    Article  PubMed  CAS  Google Scholar 

  • Murray HL, Jarrell KA (1999) Flipping the switch to an active spliceosome. Cell 96:599–602

    Article  PubMed  CAS  Google Scholar 

  • Nilsen TW (1998) RNA–RNA interactions in nuclear pre-mRNA splicing. In: Simons R, Grunberg-Manago M (eds) RNA structure and function. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 279–307

    Google Scholar 

  • van Nues RW, Beggs JD (2001) Functional contacts with a range of splicing proteins suggest a central role for Brr2p in the dynamic control of the order of events in spliceosomes of Saccharomyces cerevisiae. Genetics 157:1451–1467

    PubMed  Google Scholar 

  • Ohi MD, Link AJ, Ren L, Jennings JL, McDonald WH, Gould KL (2002) Proteomics analysis reveals stable multiprotein complexes in both fission and budding yeasts containing Myb-related Cdc5p/Cef1p, novel pre-mRNA splicing factors, and snRNAs. Mol Cell Biol 22:2011–2024

    Article  PubMed  CAS  Google Scholar 

  • Raghunathan PL, Guthrie C (1998) RNA unwinding in U4/U6 snRNPs requires ATP hydrolysis and the DEIH-box splicing factor Brr2. Curr Biol 8:847–855

    Article  PubMed  CAS  Google Scholar 

  • Schmidt H, Richert K, Drakas RA, Käufer NF (1999) spp42, identified as a classical suppressor of prp4-73, which encodes a kinase involved in pre-mRNA splicing in fission yeast, is a homologue of the splicing factor Prp8p. Genetics 153:1183–1191

    PubMed  CAS  Google Scholar 

  • Schwelnus W, Richert K, Opitz F, Groß T, Habara Y, Tani T, Käufer NF (2001) Fission yeast Prp4p kinase regulates pre-mRNA splicing by phosphorylating a non-SR-splicing factor. EMBO Rep 2:35–41

    Article  PubMed  CAS  Google Scholar 

  • Staley JP, Guthrie C (1998) Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell 92:315–326

    Article  PubMed  CAS  Google Scholar 

  • Stevens SW, Ryan DE, Ge HY, Moore RE, Young MK, Lee TD, Abelson J (2002) Composition and functional characterization of the yeast spliceosomal penta-snRNP. Mol Cell 9:31–44

    Article  PubMed  CAS  Google Scholar 

  • Umen JG, Guthrie C (1995) The second catalytic step of pre-mRNA splicing. RNA 1:869–885

    PubMed  CAS  Google Scholar 

  • Urushiyama S, Tani T, Ohshima Y (1997) The prp1 gene required for pre-mRNA splicing in Schizosaccharomyces pombe encodes a protein that contains TPR motifs and is similar to Prp6p of budding yeast. Genetics 147:101–115

    PubMed  CAS  Google Scholar 

  • Weidenhammer EM, Ruiz-Noriega M, Woolford JL Jr (1997) Prp31p promotes the association of the U4/U6.U5 tri-snRNP with prespliceosomes to form spliceosomes in Saccharomyces cerevisiae. Mol Cell Biol 17: 3580–3588

    PubMed  CAS  Google Scholar 

  • Will CL, Lührmann R (1997) Protein functions in pre-mRNA splicing. Curr Opin Cell Biol 9:320–328

    Article  PubMed  CAS  Google Scholar 

  • Wood V, Gwilliam R, Rajandream MA, Lyne M, Lyne R, Stewart A, Sgouros J, Peat N, Hayles J, Baker S et al (2002) The genome sequence of Schizosaccharomyces pombe. Nature 415:871–880

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Susanne Zock-Emmenthal for her excellent technical assistance. We are grateful to Ralf Schnabel (Technical University of Braunschweig, Germany) for stimulating and fruitful discussions and valuable comments on the manuscript. We thank Reinhard Lührmann (MPI, Göttingen, Germany) for the TMG antibodies, Chris Norbury (University of Oxford, UK) for the Cdc2 antibodies, Kathleen Gould (Vanderbilt School of Medicine, USA) for a HACdc5 tagged strain, and Knud Nierhaus (MPI, Berlin, Germany) for E. coli ribosomal subunits. This work was supported by a grant from the Deutsche Forschungsgemeinschaft to NFK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert F. Käufer.

Additional information

Communicated by M. Yamamoto

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bottner, C.A., Schmidt, H., Vogel, S. et al. Multiple genetic and biochemical interactions of Brr2, Prp8, Prp31, Prp1 and Prp4 kinase suggest a function in the control of the activation of spliceosomes in Schizosaccharomyces pombe . Curr Genet 48, 151–161 (2005). https://doi.org/10.1007/s00294-005-0013-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-005-0013-6

Keywords

Navigation