Skip to main content
Log in

Analysis of the functional domains of the mismatch repair homologue Msh1p and its role in mitochondrial genome maintenance

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Mitochondrial DNA (mtDNA) repair occurs in all eukaryotic organisms and is essential for the maintenance of mitochondrial function. Evidence from both humans and yeast suggests that mismatch repair is one of the pathways that functions in overall mtDNA stability. In the mitochondria of the yeast Saccharomyces cerevisiae, the presence of a homologue to the bacterial MutS mismatch repair protein, MSH1, has long been known to be essential for mitochondrial function. The mechanisms for which it is essential are unclear, however. Here, we analyze the effects of two point mutations, msh1-F105A and msh1-G776D, both predicted to be defective in mismatch repair; and we show that they are both able to maintain partial mitochondrial function. Moreover, there are significant differences in the severity of mitochondrial disruption between the two mutants that suggest multiple roles for Msh1p in addition to mismatch repair. Our overall findings suggest that these additional predicted functions of Msh1p, including recombination surveillance and heteroduplex rejection, may be primarily responsible for its essential role in mtDNA stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Acharya S, Foster PL, Brooks P, Fishel R (2003) The coordinated functions of the E. coli MutS and MutL proteins in mismatch repair. Mol Cell 12:233–246

    Article  CAS  PubMed  Google Scholar 

  • Alani EA, Lo C, Kleckner N (1987) A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116:541–545

    CAS  PubMed  Google Scholar 

  • Alani E, Sokolsky T, Studamire B, Miret JJ, Lahue RS (1997) Genetic and biochemical analysis of Msh2p-Msh6p: role of ATP hydrolysis and Msh2p-Msh6p subunit interactions in mismatch base pair recognition. Mol Cell Biol 17:2436–2447

    CAS  PubMed  Google Scholar 

  • Alani EA, Lee JY, Schofield MJ, Kijas AW, Hsieh P, et al (2003) Crystal structure and biochemical analysis of the MutS:ADP:Beryllium fluoride complex suggests a conserved mechanism for ATP interactions in mismatch repair. J Biol Chem 278:16088–16094

    Article  CAS  PubMed  Google Scholar 

  • Allen DJ, Mahkov A, Grilley M, Taylor J, Thresher R, et al (1997) MutS mediated heteroduplex loop formation by a translocation mechanism. EMBO J 16:4467–4476

    Article  CAS  PubMed  Google Scholar 

  • Ausubel FM, Brent R, Kingson RE, Moore DD, Seidman JG, et al (1994) Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  • Bjornson KP, Blackwell LJ, Sage H, Baitinger C, Allen D, et al (2003) Assembly and molecular activities of the MutS tetramer. J Biol Chem 278:34667–34673

    Article  CAS  PubMed  Google Scholar 

  • Boldogh IR, Nowakowski DW, Yang HC, Chung H, Karmon S, et al (2003) A protein complex containing Mdm10p, Mdm12p, and Mmm1p links mitochondrial membranes and DNA to the cytoskeleton-based segregation machinery. Mol Biol Cell 14:4618–4627

    Article  CAS  PubMed  Google Scholar 

  • Bowers J, Sokolsky T, Quach T, Alani E (1999) A mutation in the MSH6 Subunit of the Saccharomyces cerevisiae MSH2-MSH6 complex disrupts mismatch recognition. J Biol Chem 274:16115–16125

    Article  CAS  PubMed  Google Scholar 

  • Campbell CL, Thorsness MK (1998) Escape of mitochondrial DNA to the nucleus in yme1 yeast is mediated by vacuolar-dependent turnover of abnormal mitochondrial compartments. J Cell Sci 111:2455–2464

    CAS  PubMed  Google Scholar 

  • Chambers SR, Hunter N, Louis EJ, Borts RH (1996) The mismatch repair system reduces meiotic homeologous recombination and stimulates recombination-dependent chromosome loss. Mol Cell Biol 16:6110–6120

    CAS  PubMed  Google Scholar 

  • Chi N, Kolodner RD (1994a) The effect of DNA mismatches on the ATPase Activity of MSH1, a protein in yeast mitochondria that recognizes DNA mismatches. J Biol Chem 269:29993–29997

    CAS  PubMed  Google Scholar 

  • Chi N, Kolodner RD (1994b) Purification and characterization of MSH1, a yeast mitochondrial protein that binds to DNA mismatches. J Biol Chem 269:29984–29992

    CAS  PubMed  Google Scholar 

  • Culligan KM, Meyer-Gauen G, Lyons-Weiler J, Hays JB (2000) Evolutionary origin, diversification and specialization of eukaryotic MutS homolog mismatch repair proteins. Nucleic Acids Res 28:463–471

    Article  CAS  PubMed  Google Scholar 

  • Datta A, Hendrix M, Lipsitch M, Jinks-Robertson S (1997) Dual roles for DNA sequence identity and the mismatch repair system in the regulation of mitotic crossing over in yeast. Proc Natl Acad Sci USA 94:9757–9762

    Google Scholar 

  • Drotschmann K, Yang W, Brownewell FE, Kool ET, Kunkel TA (2001) Asymmetric recognition of DNA local distortion: structure-based functional studies of eukaryotic Msh2-Msh6. J Biol Chem 276:46225–46229

    Article  CAS  PubMed  Google Scholar 

  • Drotschmann K, Yang W, Kunkel TA (2002) Evidence for sequential action of two ATPase active sites in yeast Msh2-Msh6. DNA Repair 1:743–753

    Article  CAS  PubMed  Google Scholar 

  • Dufner P, Marra G, Raschle M, Jiricny J (2000) Mismatch recognition and DNA-dependent stimulation of the ATPase activity of hMutSalpha is abolished by a single mutation in the hMSH6 subunit. J Biol Chem 275:36550–36555

    Article  CAS  PubMed  Google Scholar 

  • Dujon B (1981) Mitochondral genetics and functions. In: Strathern JN, Jones EW, Broach JR (eds) Molecular biology of the yeast Saccharomyces: life cycle and inheritance. Cold Spring Harbor Laboratory, Plainview, pp 505–635

    Google Scholar 

  • Dzerzbicki P, Koprowski P, Fikus MU, Malc E, Ciesla Z (2004) Repair of oxidative damage in mitochondrial DNA of Saccharomyces cerevisiae: involvement of the MSH1-dependent pathway. DNA Repair 3:403–411

    Article  PubMed  Google Scholar 

  • Eisen JA (1998) A phylogenomic study of the MutS family of proteins. Nucleic Acids Res 26:4291–4300

    Article  CAS  PubMed  Google Scholar 

  • Evans E, Alani E (2002) Roles for mismatch repair factors in regulating genetic recombination. Mol Cell Biol 20:7839–7844

    Article  Google Scholar 

  • Evans E, Sugawara N, Haber JE, Alani E (2000) The Saccharomyces cerevisiae Msh2 mismatch repair protein localizes to recombination intermediates in vivo. Mol Cell 5:789–799

    Article  CAS  PubMed  Google Scholar 

  • Foury F, Vanderstraeten S (1992) Yeast mitochondrial DNA mutators with deficient proofreading exonuclease activity. EMBO J 11:2717–2726

    CAS  PubMed  Google Scholar 

  • Gradia S, Acharya S, Fishel R (1997) The human mismatch recognition complex hMSH2-hMSH6 functions as a novel moelcular switch. Cell 91:995–1005

    Article  CAS  PubMed  Google Scholar 

  • Gradia S, Do S, Wilson T, Acharya S, Mahkov A, et al (1999) hMSH2-hMSH6 forms a hydrolysis-independent sliding clamp on mismatched DNA. Mol Cell 3:255–261

    Article  CAS  PubMed  Google Scholar 

  • Graeber MB, Muller U (1998) Recent developments in the molecular genetics of mitochondrial disorders. J Neurol Sci 153:251–263

    Article  CAS  PubMed  Google Scholar 

  • Haber LT, Walker GC (1991) Altering the conserved nucleotide binding motif in the Salmonella typhimurium MutS mismatch repair protein affects both its ATPase and mismatch binding activities. EMBO J 10:2707–2715

    CAS  PubMed  Google Scholar 

  • Hanekamp T, Thorsness MK, Rebbapragada I, Fisher EM, Seebart C, et al (2002) Maintenance of mitochondrial morphology is linked to maintenance of the mitohcondrial genome in Saccharomyces cerevisiae. Genetics 162:1147–1156

    CAS  PubMed  Google Scholar 

  • Harfe BD, Jinks-Robertson S (2000) DNA mismatch repair and genetic instability. Annu Rev Genet 34:359–399

    Article  CAS  PubMed  Google Scholar 

  • Hermann GJ, Shaw JM (1998) Mitochondrial dynamics in yeast. Annu Rev Cell Dev Biol 14:265–303

    Article  CAS  PubMed  Google Scholar 

  • Hollingsworth NM, Ponte L, Halsey C (1995) MSH5, a novel MutS homolog, facilitates meiotic reciprocal recombination between homologs in Saccharomyces cerevisiae but not mismatch repair. Genes Dev 9:1728–1739

    CAS  PubMed  Google Scholar 

  • Hu JP, Vanderstraeten S, Foury F (1995) Isolation and characterization of ten mutator alleles of the mitochondrial DNA polymerase-encoding MIP1 gene from Saccharomyces cerevisiae. Gene 160:105–110

    Article  CAS  PubMed  Google Scholar 

  • Junop MS, Obmolova G, Rausch K, Hsieh P, Yang W (2001) Composite active site of an ABC ATPase: MutS uses ATP to verify mismatch recognition and authorize DNA repair. Mol Cell 7:1–12

    Google Scholar 

  • Junop MS, Yang W, Funchain P, Clendenin W, Miller JH (2003) In vitro and in vivo studies of MutS, MutL and MutH mutants: correlation of mismatch repair and DNA recombination. DNA Repair 2:387–405

    Article  CAS  PubMed  Google Scholar 

  • Kijas AW, Studamire B, Alani EA (2003) Msh2 separation of function mutations confer defects in the initiation steps of mismatch repair. J Mol Biol 331:128–138

    Article  Google Scholar 

  • Kondo-Okamoto N, Shaw JM, Okamoto K (2003) Mmm1p spans both the outer and inner mitochondrial membranes and contains distinct domains for targeting and foci formation. J Biol Chem 278:48997–49005

    Article  CAS  PubMed  Google Scholar 

  • Koprowski P, Fikus M, Mieckowski P, Ciesla Z (2002) A dominant mitochondrial mutator phenotype of Saccharomyces cerevisiae conferred by msh1 alleles altered in the sequence encoding the ATP-binding domain. Mol Genet Genomics 266:988–994

    Article  CAS  PubMed  Google Scholar 

  • Lamers MH, Perrakis A, Enzlin JH, Winterwerp HHK, Wind ND, et al (2000) The crystal structure of DNA mismatch repair protein MutS binding to a G.T mismatch. Nature 407:711–717

    Article  CAS  PubMed  Google Scholar 

  • Lea DE, Coulson CA (1949) The distribution of the number of mutants in bacterial populations. J Genet 49:264–285

    Google Scholar 

  • MacAlpine DM, Perlman PS, Butow RA (2000) The numbers of individual mitochondrial DNA molecules and mitochondrial DNA nucleoids in yeast are co-regulated by the general amino acid control pathway. EMBO J 19:767–775

    Article  CAS  PubMed  Google Scholar 

  • Malkov VA, Biswas I, Camerini-Otero RD, Hsieh P (1997) Photocross-linking of the NH2-terminal region of Taq MutS protein to the major groove of a heteroduplex DNA. J Biol Chem 272:23811–23817

    Article  CAS  PubMed  Google Scholar 

  • Mason P, Matheson EC, Hall AG, Lightowlers RN (2003) Mismatch repair activity in mammaliam mitochondria. Nucleic Acids Res 31:1052–1058

    Article  PubMed  Google Scholar 

  • Meeusen S, Nunnari J (2003) Evidence for a two membrane-spanning autonomous mitochondrial DNA replisome. J Cell Biol 163:503–510

    Article  CAS  PubMed  Google Scholar 

  • Meeusen S, Tieu Q, Wong E, Weiss E, Schieltz D, et al (1999) MGM101p is a novel component of the mitochondrial nucleoid that binds DNA and is required for the repair of oxidatively damaged mitochondrial DNA. J Cell Biol 145:291–304

    Article  CAS  PubMed  Google Scholar 

  • Modrich P (1991) Mechanisms and biological effects of mismatch repair. Annu Rev Genet 25:229–253

    Article  CAS  PubMed  Google Scholar 

  • Modrich P, Lahue RS (1996) Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu Rev Genet 25:229–253

    Article  Google Scholar 

  • Myung K, Datta A, Chen C, Kolodner RD (2001) SGS1, the Saccharomyces cerevisiae homologue of BLM and WRN, suppress genome instability and homeologous recombination. Nat Genet 27:113–116

    Google Scholar 

  • Ni TT, Marschisky GT, Kolodner RD (1999) MSH2 and MSH6 are required for removal of adenine misincorporation opposite 8-oxo-guanine in S. cerevisiae. Mol Cell 4:439–444

    Article  CAS  PubMed  Google Scholar 

  • Obmolova G, Ban C, Hsieh P, Yang W (2000) Crystal structures of mismatch repair protein MutS and its complex with a substrate DNA. Nature 407:703–710

    Article  CAS  PubMed  Google Scholar 

  • Phadnis N, Sia EA (2004) Role of the putative structural protein sed1p in mitochondrial genome maintenance. J Mol Biol 342:1115–1129

    Article  CAS  PubMed  Google Scholar 

  • Pochart P, Woltering D, Hollingsworth NM (1997) Conserved properties between functionally distinct MutS homologs in yeast. J Biol Chem 272:30345–30349

    Article  CAS  PubMed  Google Scholar 

  • Pon L, Schatz G (1991) Biogenesis of yeast mitochondria. (The molecular and cellular biology of yeast mitochondria: genome dynamics, protein synthesis, and energetics) Cold Spring Harbor Laboratory, Plainview, pp 333–406

    Google Scholar 

  • Reenan R, Kolodner RK (1992a) Characterization of insertion mutations in the Saccharomyces cerevisiae MSH1 and MSH2 genes: evidence for separate mitochondrial and nuclear functions. Genetics 132:975–985

    CAS  PubMed  Google Scholar 

  • Reenan RA, Kolodner RD (1992b) Isolation and characterization of two Saccharomyces cerevisiae genes encoding homologs of the bacterial MutS mismatch repair proteins. Genetics 132:963–973

    CAS  PubMed  Google Scholar 

  • Roberts J, Kunkel T (1996) Fidelity of DNA replication. In: Moll D (ed) DNA replication in eukaryotic cells. Cold Spring Harbor Laboratory, Plainview, pp 217–248

    Google Scholar 

  • Ross-Macdonald P, Roeder GS (1994) Mutation of a meiosos-specific MutS homolog decreases crossing over but not mismatch correction. Cell 79:1069–1080

    Article  CAS  PubMed  Google Scholar 

  • Schofield MJ, Hsieh P (2003) DNA mismatch repair: molecular mechanisms and biological function. Annu Rev Microbiol 57:579–608

    Article  CAS  PubMed  Google Scholar 

  • Schofield MJ, Brownewell FJ, Nayak S, Du C, Kool ET, et al (2001) The Phe-X-Glu DNA binding motif of MutS. J Biol Chem 276:45505–45508

    Article  CAS  PubMed  Google Scholar 

  • Sherman F (1991) Getting started with yeast. Methods Enzymol 194:3–21

    Article  CAS  PubMed  Google Scholar 

  • Shoubridge EA (2001) Nuclear genetic defects of oxidative phosphorylation. Hum Mol Genet 10:2277–2284

    Article  CAS  PubMed  Google Scholar 

  • Sia EA, Kokoska RJ, Dominska M, Greenwell P, Petes TD (1997) Microsatellite instability in yeast: dependence on repeat unit size and DNA mismatch repair genes. Mol Cell Biol 17:2851–2858

    CAS  PubMed  Google Scholar 

  • Sia EA, Butler CA, Dominska M, Greenwell P, Fox TD, et al (2000) Analysis of microsatellite mutations in the mitochondrial DNA of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 97:250–255

    Google Scholar 

  • Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27

    CAS  PubMed  Google Scholar 

  • Studamire B, Quach T, Alani E (1998) Saccharomyces cerevisiae Msh2p and Msh6p ATPase activities are both required during mismatch repair. Mol Cell Biol 18:7590–7601

    CAS  PubMed  Google Scholar 

  • Studamire B, Price G, Sugawara N, Haber JE, Alani EA (1999) Separation-of-function mutations in Saccharomyces cerevisiae that confer miamatch repair defects but do not affect non-homologous tail removal during recombination. Mol Cell Biol 19:7558–7567

    CAS  PubMed  Google Scholar 

  • Su S, Modrich P (1986) Escherichia coli mutS-encoded protein binds to mismatched DNA base pairs. Proc Natl Acad Sci USA 83:5057–5061

    Google Scholar 

  • Sugawara N, Paques F, Colaiacovo M, Haber JM (1997) Role of Saccharomyces cerevisiae Msh2 and Msh3 repair proteins in double-strand break-induced recombination. Proc Natl Acad Sci USA 94:9214–9219

    Google Scholar 

  • Sugawara N, Ira G, Haber JE (2000) DNA length dependence of the single-strand annealing pathway and the role of Saccharomyces cerevisiae RAD59 in double-strand break repair. Mol Cell Biol 20:5300–5309

    Article  CAS  PubMed  Google Scholar 

  • Sugawara N, Goldfarb T, Studamire B, Alani EA, Haber JE (2004) Roles for MSH mismatch repair proteins and SGS1 in heteroduplex rejection during single strand annealing between mismatched DNA sequences (in press)

  • Vanderstraeten S, Van der Brule S, Hu JP, Foury F (1998) The role of 3′-5′ exonucleolytic proofreading and mismatch repair in yeast mitochondrial DNA error avoidance. J Biol Chem 273:23690–23697

    Article  CAS  PubMed  Google Scholar 

  • Wu TH, Marinus MG (1994) Dominant negative mutations in the mutS gene of Escherichia coli. J Bacteriol 176:5393–5400

    CAS  PubMed  Google Scholar 

  • Yamamoto A, Schofield MJ, Biswas I, Hsieh P (2000) Requirement for Phe36 for DNA binding and mismatch repair by Escherichia coli MutS protein. Nucleic Acids Res 28:3564–3569

    Article  CAS  PubMed  Google Scholar 

  • Young DM, Ornston LN (2001) Functions of the mismatch repair gene mutS from Acinobacter sp. strain ADP1. J Bacteriol 183:6822–6831

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health grant GM63626-01. E.A.S. is the recipient of a Burroughs–Wellcome Fund Career Award. Purchase of the Leica TCS SP spectral confocal microscope was supported by shared instrumentation awards from the National Science Foundation (9512886) and the National Institute of Health (S10RR11358) and by matching funds from the University of Rochester. We would like to thank Dr. Rita Miller for use of the Zeiss Axioplan 2 microscope. We would also like to thank Leah Jablonski for construction of the msh1-G776D mutation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine A. Sia.

Additional information

Communicated by M. Brunner

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mookerjee, S.A., Lyon, H.D. & Sia, E.A. Analysis of the functional domains of the mismatch repair homologue Msh1p and its role in mitochondrial genome maintenance. Curr Genet 47, 84–99 (2005). https://doi.org/10.1007/s00294-004-0537-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-004-0537-1

Keywords

Navigation