Skip to main content
Log in

Molekularpathologie der Weichgewebstumoren: Beitrag zur Diagnostik und Therapieprädiktion

Molecular pathology of soft tissue tumors: Contribution to diagnosis and therapy prediction

  • Schwerpunkt: Molekularpathologie
  • Published:
Der Pathologe Aims and scope Submit manuscript

Zusammenfassung

Mesenchymale Tumoren stellen aufgrund ihrer Morphologie für den Pathologen oft eine diagnostische Herausforderung dar. Von diagnostischem Nutzen kann daher der Nachweis tumorspezifischer Mutationen oder chromosomaler Aberrationen, wie Translokationen und Fusionen, Amplifikationen oder Deletionen sein. Die Methode der Wahl für die Routinediagnostik ist derzeit bei den meisten Veränderungen die Fluoreszenz-in-situ-Hybridisierung. Daneben kommen auch die reverse Transkriptase-Polymerasekettenreaktion (PCR), Sequenzierungen sowie spezifische immunhistochemische Assays zum Einsatz. „Next generation sequencing“ hat zur Identifizierung bislang unbekannter Aberrationen beigetragen. Hauptsächlich dient die Molekularpathologie bei Sarkomen der differenzialdiagnostischen Abgrenzung verschiedener Entitäten. Auch im Hinblick auf eine personalisierte Therapie kann die Molekularpathologie zum Nachweis prädiktiver Marker genutzt werden.

Abstract

Soft tissue tumors are often challenging for pathologists on the basis of morphology alone; therefore, tumor-specific chromosomal aberrations, such as translocations and fusions, amplifications or deletions can be diagnostically useful. Fluorescence in situ hybridization is widely used for the detection of most aberrations in routine diagnostics. Furthermore, reverse transcriptase PCR, sequencing and specific immunohistochemical assays are also applied. Next generation sequencing has already contributed to the identification of hitherto unknown aberrations. Molecular pathology is mainly used in sarcomas to discriminate between different tumor entities. In terms of personalized therapy and targeted treatment, molecular pathology can be utilized to detect predictive markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Agaram NP, Chen H-W, Zhang L et al (2014) EWSR1-PBX3: a novel gene fusion in myoepithelial tumors. Genes Chromosomes Cancer n/a-n/a

  2. Antonescu C (2014) Round cell sarcomas beyond Ewing: emerging entities. Histopathology 64:26–37

    Article  PubMed  Google Scholar 

  3. Antonescu CR, Zhang L, Chang N-E et al (2010) EWSR1-POU5F1 fusion in soft tissue myoepithelial tumors. A molecular analysis of sixty-six cases, including soft tissue, bone, and visceral lesions, showing common involvement of the EWSR1 gene. Genes Chromosomes Cancer 49:1114–1124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Bridge RS, Rajaram V, Dehner LP et al (2005) Molecular diagnosis of Ewing sarcoma//primitive neuroectodermal tumor in routinely processed tissue: a comparison of two FISH strategies and RT-PCR in malignant round cell tumors. Mod Pathol 19:1–8

    Article  Google Scholar 

  5. Dufresne A, Cassier P, Couraud L et al (2012) Desmoplastic small round cell tumor: current management and recent findings. Sarcoma 2012:714986

    Article  PubMed Central  PubMed  Google Scholar 

  6. Erickson-Johnson MR, Chou MM, Evers BR et al (2011) Nodular fasciitis: a novel model of transient neoplasia induced by MYH9-USP6 gene fusion. Lab Invest 91:1427–1433

    Article  CAS  PubMed  Google Scholar 

  7. Errani C, Zhang L, Sung YS et al (2011) A novel WWTR1-CAMTA1 gene fusion is a consistent abnormality in epithelioid hemangioendothelioma of different anatomic sites. Genes Chromosomes Cancer 50:644–653

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Fletcher C, Bridge J, Hogendoorn P et al (2013) WHO Classification of tumours of soft tissue and bone. Pathology and genetics of tumours of soft tissue and bone. IARC Press, Lyon

    Google Scholar 

  9. Fletcher CDM (2014) The evolving classification of soft tissue tumours – an update based on the new 2013 WHO classification. Histopathology 64:2–11

    Article  PubMed  Google Scholar 

  10. Flucke U, Mentzel T, Verdijk MA et al (2012) EWSR1-ATF1 chimeric transcript in a myoepithelial tumor of soft tissue: a case report. Hum Pathol 43:764–768

    Article  PubMed  Google Scholar 

  11. Flucke U, Tops BJ, Verdijk MJ et al (2012) NR4A3 rearrangement reliably distinguishes between the clinicopathologically overlapping entities myoepithelial carcinoma of soft tissue and cellular extraskeletal myxoid chondrosarcoma. Virchows Arch 460:621–628

    Article  PubMed Central  PubMed  Google Scholar 

  12. Foo WC, Cruise MW, Wick MR et al (2011) Immunohistochemical staining for TLE1 distinguishes synovial sarcoma from histologic mimics. Am J Clin Pathol 135:839–844

    Article  PubMed  Google Scholar 

  13. Friedrichs N, Kriegl L, Poremba C et al (2006) Pitfalls in the detection of t(11;22) translocation by fluorescence in situ hybridization and RT-PCR: a single-blinded study. Diagn Mol Pathol 15:83–89

    Article  CAS  PubMed  Google Scholar 

  14. Hantschke M, Mentzel T, Rütten A et al (2010) Cutaneous clear cell sarcoma: a clinicopathologic, immunohistochemical, and molecular analysis of 12 cases emphasizing its distinction from dermal melanoma. Am J Surg Pathol 34:216–222 210.1097/PAS. 1090b1013e3181c1097d1098b1092

    Article  PubMed  Google Scholar 

  15. Holtkamp N, Malzer E, Zietsch J et al (2008) EGFR and erbB2 in malignant peripheral nerve sheath tumors and implications for targeted therapy. Neuro Oncol 10:946–957

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Huss S, Nehles J, Binot E et al (2013) β-Catenin (CTNNB1) mutations and clinicopathological features of mesenteric desmoid-type fibromatosis. Histopathology 62:294–304

    Article  PubMed  Google Scholar 

  17. Huss S, Wardelmann E, Goltz D et al (2012) Activating PDGFRA mutations in inflammatory fibroid polyps occur in exons 12, 14 and 18 and are associated with tumour localization. Histopathology 61:59–68

    Article  PubMed  Google Scholar 

  18. Ihle MA, Fassunke J, König K et al (2014) Comparison of high resolution melting analysis, pyrosequencing, next generation sequencing and immunohistochemistry to conventional Sanger sequencing for the detection of p.V600E and non-p.V600E BRAF mutations. BMC Cancer 14:13.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Künstlinger H, Huss S, Merkelbach-Bruse S et al (2013) Gastrointestinal stromal tumors with KIT Exon 9 mutations: update on genotype-phenotype correlation and validation of a high-resolution melting assay for mutational testing. Am J Surg Pathol 37:1648–1659

    Article  PubMed  Google Scholar 

  20. Künstlinger H, Binot E, Merkelbach-Bruse S et al (2014) High-resolution melting analysis is a sensitive diagnostic tool to detect imatinib-resistant and imatinib-sensitive PDGFRA exon 18 mutations in gastrointestinal stromal tumors. Hum Pathol 45:573–582

    Article  PubMed  Google Scholar 

  21. Labropoulos SV, Razis ED (2007) Imatinib in the treatment of dermatofibrosarcoma protuberans. Biologics 1:347

  22. Le Guellec S, Soubeyran I, Rochaix P et al (2012) CTNNB1 mutation analysis is a useful tool for the diagnosis of desmoid tumors: a study of 260 desmoid tumors and 191 potential morphologic mimics. Mod Pathol 25:1551–1558

    Article  PubMed  Google Scholar 

  23. Lokka S, Scheel AH, Dango S et al (2014) Challenging dedifferentiated liposarcoma identified by MDM 2-amplification, a report of two cases. BMC Clin Pathol 14:36

    Article  PubMed Central  PubMed  Google Scholar 

  24. Lovly CM, Gupta A, Lipson D et al (2014) Inflammatory myofibroblastic tumors harbor multiple potentially actionable kinase fusions. Cancer Discovery 4:889–895

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Mentzel T, Schildhaus HU, Palmedo G et al (2012) Postradiation cutaneous angiosarcoma after treatment of breast carcinoma is characterized by MYC amplification in contrast to atypical vascular lesions after radiotherapy and control cases: clinicopathological, immunohistochemical and molecular analysis of 66 cases. Mod Pathol 25:75–85

    Article  CAS  PubMed  Google Scholar 

  26. Miettinen M (2010) Modern soft tissue pathology: tumors and non-neoplastic conditions. Cambridge University Press

  27. Mussi C, Schildhaus H-U, Gronchi A et al (2008) Therapeutic consequences from molecular biology for gastrointestinal stromal tumor patients affected by neurofibromatosis type 1. Clin Cancer Res 14:4550–4555

    Article  CAS  PubMed  Google Scholar 

  28. Nishio J, Iwasaki H, Nabeshima K et al (2011) Cytogenetics and molecular genetics of myxoid soft-tissue sarcomas. Genet Res Int 2011:13

  29. Pilotti S, Torre GD, Mezzelani A et al (2000) The expression of MDM 2/CDK4 gene product in the differential diagnosis of well differentiated liposarcoma and large deep-seated lipoma. Br J Cancer 82:1271–1275

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Robinson DR, Wu Y-M, Kalyana-Sundaram S et al (2013) Identification of recurrent NAB2-STAT6 gene fusions in solitary fibrous tumor by integrative sequencing. Nat Genet 45:180–185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Schildhaus H-U, Riegel R, Hartmann W et al (2011) Lysine-specific demethylase 1 is highly expressed in solitary fibrous tumors, synovial sarcomas, rhabdomyosarcomas, desmoplastic small round cell tumors, and malignant peripheral nerve sheath tumors. Hum Pathol 42:1667–1675

    Article  CAS  PubMed  Google Scholar 

  32. Schildhaus HU, Cavlar T, Binot E et al (2008) Inflammatory fibroid polyps harbour mutations in the platelet-derived growth factor receptor alpha (PDGFRA) gene. J Pathol 216:176–182

    Article  CAS  PubMed  Google Scholar 

  33. Schmitz K, Koeppen H, Binot E et al (2014) MET gene copy number alterations and expression of MET and hepatocyte growth factor are potential biomarkers in angiosarcomas and undifferentiated pleomorphic sarcomas. PLoS One (im Druck)

  34. Segura S, Salgado R, Toll A et al (2011) Identification of t(17;22)(q22;q13) (COL1A1/PDGFB) in dermatofibrosarcoma protuberans by fluorescence in situ hybridization in paraffin-embedded tissue microarrays. Hum Pathol 42:176–184

    Article  CAS  PubMed  Google Scholar 

  35. Sorensen PHB, Lynch JC, Qualman SJ et al (2002) PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the children’s oncology group. J Clin Oncol 20:2672–2679

    Article  CAS  PubMed  Google Scholar 

  36. Wardelmann E, Schildhaus H-U, Merkelbach-Bruse S et al (2010) Soft tissue sarcoma: from molecular diagnosis to selection of treatment. Pathological diagnosis of soft tissue sarcoma amid molecular biology and targeted therapies. Ann Oncol 21:vii265–vii269

  37. Wong ML, Medrano JF (2005) Real-time PCR for mRNA quantitation. Biotechniques 39:75

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.-U. Schildhaus.

Ethics declarations

Interessenkonflikt

K. Schmitz und H.-U. Schildhaus geben an, dass kein Interessenskonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Additional information

Schwerpunktherausgeber

C. Röcken, Kiel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmitz, K., Schildhaus, HU. Molekularpathologie der Weichgewebstumoren: Beitrag zur Diagnostik und Therapieprädiktion. Pathologe 36, 126–136 (2015). https://doi.org/10.1007/s00292-015-0010-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-015-0010-6

Schlüsselwörter

Keywords

Navigation