Skip to main content
Log in

Molekulargenetische Analyse bei der Diagnose melanozytärer Tumoren

DNA copy number changes in the diagnosis of melanocytic tumors

  • Schwerpunkt: Melanozytäre Tumoren
  • Published:
Der Pathologe Aims and scope Submit manuscript

Zusammenfassung

Die Krebsentstehung geht bei vielen Tumoren mit einem Verlust der Kontrolle über die genomische Stabilität einher und resultiert in einem veränderten und durch Selektion bestimmten Genom der Krebszellen. Die komparative genomische Hybridisierung (CGH) ist eine Methode, mit der das Genom von Tumorzellen auf klonale chromosomale Aberrationen untersucht werden kann. Mittels CGH wurde gezeigt, dass sich Melanome von melanozytären Nävi durch häufige chromosomale Aberrationen unterscheiden. Die CGH-Analyse benigner melanozytärer Tumoren zeigt typischerweise keine chromosomalen Veränderungen, während man bei der überwiegenden Anzahl der Melanome Zugewinne und Verluste von bestimmten Chromosomen findet. Eine Ausnahme bilden Spitz-Nävi, bei denen etwa 20% zusätzliche Kopien von Chromosom 11p aufweisen. Diese Aberrationen werden bei Melanomen nicht beobachtet. Diese deutlichen Unterschiede der Aberrationsmuster stellen ein wichtiges Hilfsmittel für die Diagnose histologisch nicht eindeutig klassifizierbarer melanozytärer Tumoren dar. Darüber hinaus konnte mittels CGH und Mutationsanalyse auch gezeigt werden, dass Melanome keine einheitliche Erkrankung, sondern eine Gruppe von genetisch verschiedenen Tumoren sind. Derzeit untersucht eine Studie die Korrelation der chromosomalen Veränderungen bei diagnostisch unklaren melanozytären Tumoren mit dem Erkrankungsverlauf der Patienten.

Abstract

In the case of many tumors, the development of cancer is associated with a loss of control over genomic integrity, resulting in alterations, determined by selection, of the genome of the cancer cells. Comparative genomic hybridization (CGH) is a method that can be used to assess the entire genome of tumor cells for the presence of changes in DNA copy number. CGH analysis has revealed that melanomas differ from melanocytic nevi in the presence of frequent chromosomal aberrations. CGH analysis of benign melanocytic tumors typically shows no clonally expanded chromosomal aberrations, while in the vast majority of melanomas gains and losses of particular chromosomes are found. As an exception, Spitz nevi show an increased copy number of chromosome 11p in about 20% of cases, something not found in melanoma. These marked differences between the aberration patterns of melanomas and melanocytic nevi can be exploited during differential diagnosis of melanocytic tumors in which histopathologic assessment yields equivocal results. In addition, it has also been shown with the aid of CGH and mutation analysis that melanomas are not a homogenous disease, but rather a group of genetically different tumors. A study checking for correlations between the chromosomal alterations in melanocytic tumors not classified at diagnosis and the course of illness in patients is currently under way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Literatur

  1. Ackerman AB, Cerroni L, Kerl H (1994) Pitfalls in histopathologic diagnosis of malignant melanoma. Lea & Febiger, Philadelphia

  2. Albertson DG, Ylstra B, Segraves R et al. (2000) Quantitative mapping of amplicon structure by array CGH identifies CYP24 as a candidate oncogene. Nat Genet 25: 144–146

    Article  PubMed  CAS  Google Scholar 

  3. Balazs M, Adam Z, Treszl A et al. (2001) Chromosomal imbalances in primary and metastatic melanomas revealed by comparative genomic hybridization. Cytometry 46: 222–232

    Article  PubMed  CAS  Google Scholar 

  4. Barnhill RL, Argenyi ZB, From L et al. (1999) Atypical Spitz nevi/tumors: lack of consensus for diagnosis, discrimination from melanoma, and prediction of outcome. Hum Pathol 30: 513–520

    Article  PubMed  CAS  Google Scholar 

  5. Bastian BC, Kashani-Sabet M, Hamm H et al. (2000) Gene amplifications characterize acral melanoma and permit the detection of occult tumor cells in the surrounding skin. Cancer Res 60: 1968–1973

    PubMed  CAS  Google Scholar 

  6. Bastian BC, LeBoit PE, Hamm H et al. (1998) Chromosomal gains and losses in primary cutaneous melanomas detected by comparative genomic hybridization. Cancer Res 58: 2170–2175

    PubMed  CAS  Google Scholar 

  7. Bastian BC, LeBoit PE, Pinkel D (2000) Mutations and copy number increase of HRAS in Spitz nevi with distinctive histopathological features. Am J Pathol 157: 967–972

    PubMed  CAS  Google Scholar 

  8. Bastian BC, Olshen AB, LeBoit PE, Pinkel D (2003) Classifying melanocytic tumors based on DNA copy number changes. Am J Pathol 163: 1765–1770

    PubMed  CAS  Google Scholar 

  9. Bastian BC, Wesselmann U, Pinkel D, LeBoit PE (1999) Molecular cytogenetic analysis of Spitz nevi shows clear differences to melanoma. J Invest Dermatol 113: 1065–1069

    Article  PubMed  CAS  Google Scholar 

  10. Bastian BC, Xiong J, Frieden IJ et al. (2002) Genetic changes in neoplasms arising in congenital melanocytic nevi: differences between nodular proliferations and melanomas. Am J Pathol 161: 1163–1169

    PubMed  CAS  Google Scholar 

  11. Cheung VG, Nowak N, Jang W et al. (2001) Integration of cytogenetic landmarks into the draft sequence of the human genome. Nature 409: 953–958

    Article  PubMed  CAS  Google Scholar 

  12. Clark WH Jr, Elder DE, Guerry D (1990) Dysplastic nevi and malignant melanoma. In: Farmer ER, Hood AF (eds) Pathology of the Skin. McGraw-Hill, New York, pp 729–735

  13. Clark WH, Hood AF, Tucker MA, Jampel RM (1998) Atypical melanocytic nevi of the genital type with a discussion of reciprocal parenchymal-stromal interactions in the biology of neoplasia. Hum Pathol 29: S1–S24

    Article  PubMed  Google Scholar 

  14. Cohen Y, Rosenbaum E, Begum S et al. (2004) Exon 15 BRAF mutations are uncommon in melanomas arising in nonsun-exposed sites. Clin Cancer Res 10: 3444–3447

    Article  PubMed  CAS  Google Scholar 

  15. Cook MG (1997) Diagnostic discord with melanoma. J Pathol 182: 247–249

    Article  PubMed  CAS  Google Scholar 

  16. Corona R, Mele A, Amini M et al. (1996) Interobserver variability on the histopathologic diagnosis of cutaneous melanoma and other pigmented skin lesions. J Clin Oncol 14: 1218–1223

    PubMed  CAS  Google Scholar 

  17. Curtin JA, Busam K, Pinkel D, Bastian BC (2006) Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol 24: 4340–4346

    Article  PubMed  CAS  Google Scholar 

  18. Curtin JA, Fridlyand J, Kageshita T et al. (2005) Distinct sets of genetic alterations in melanoma. N Engl J Med 353: 2135–2147

    Article  PubMed  CAS  Google Scholar 

  19. Denoyelle C, Abou-Rjaily G, Bezrookove V et al. (2006) Anti-oncogenic role of the endoplasmic reticulum differentially activated by mutations in the MAPK pathway. Nat Cell Biol 8: 1053–1063

    Article  PubMed  CAS  Google Scholar 

  20. Harvell JD, Bastian BC, LeBoit PE (2002) Persistent (recurrent) Spitz nevi: a histopathologic, immunohistochemical, and molecular pathologic study of 22 cases. Am J Surg Pathol 26: 654–661

    Article  PubMed  Google Scholar 

  21. Healy E, Rehman I, Angus B, Rees JL (1995) Loss of heterozygosity in sporadic primary cutaneous melanoma. Genes Chromosomes Cancer 12: 152–156

    Article  PubMed  CAS  Google Scholar 

  22. Hoang MP, Prieto VG, Burchette JL, Shea CR (2001) Recurrent melanocytic nevus: a histologic and immunohistochemical evaluation. J Cutan Pathol 28: 400–406

    Article  PubMed  CAS  Google Scholar 

  23. Ishkanian AS, Malloff CA, Watson SK et al. (2004) A tiling resolution DNA microarray with complete coverage of the human genome. Nat Genet 36: 299–303

    Article  PubMed  CAS  Google Scholar 

  24. Isshiki K, Elder DE, Guerry D, Linnenbach AJ (1993) Chromosome 10 allelic loss in malignant melanoma. Genes Chromosomes Cancer 8: 178–184

    Article  PubMed  CAS  Google Scholar 

  25. Jackson R (1997) Malignant melanoma: a review of 75 malpractice cases. Int J Dermatol 36: 497–498

    Article  PubMed  CAS  Google Scholar 

  26. Kakati S, Song SY, Sandberg AA (1977) Chromosomes and causation of human cancer and leukemia. XXII. Karyotypic changes in malignant melanoma. Cancer 40: 1173–1181

    Article  PubMed  CAS  Google Scholar 

  27. Kallioniemi A, Kallioniemi OP, Sudar D et al. (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258: 818–821

    Article  PubMed  CAS  Google Scholar 

  28. Kempf W, Haeffner AC, Mueller B et al. (1998) Experts and gold standards in dermatopathology: qualitative and quantitative analysis of the self-assessment slide seminar at the 17th colloquium of the International Society of Dermatopathology. Am J Dermatopathol 20: 478–482

    Article  PubMed  CAS  Google Scholar 

  29. Maldonado JL, Fridlyand J, Patel H et al. (2003) Determinants of BRAF mutations in primary melanomas. J Natl Cancer Inst 95: 1878–1890

    PubMed  CAS  Google Scholar 

  30. Maldonado JL, Timmerman L, Fridlyand J, Bastian BC (2004) Mechanisms of cell-cycle arrest in Spitz nevi with constitutive activation of the MAP-kinase pathway. Am J Pathol 164: 1783–1787

    PubMed  CAS  Google Scholar 

  31. Mertens F, Johansson B, Hoglund M, Mitelman F (1997) Chromosomal imbalance maps of malignant solid tumors: a cytogenetic survey of 3185 neoplasms. Cancer Res 57: 2765–2780

    PubMed  CAS  Google Scholar 

  32. Millikin D, Meese E, Vogelstein B et al. (1991) Loss of heterozygosity for loci on the long arm of chromosome 6 in human malignant melanoma. Cancer Res 51: 5449–5453

    PubMed  CAS  Google Scholar 

  33. Peris K, Keller G, Chimenti S et al. (1995) Microsatellite instability and loss of heterozygosity in melanoma. J Invest Dermatol 105: 625–628

    Article  PubMed  CAS  Google Scholar 

  34. Pinkel D, Segraves R, Sudar D et al. (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 20: 207–211

    Article  PubMed  CAS  Google Scholar 

  35. Rivers JK (2004) Is there more than one road to melanoma? Lancet 363: 728–730

    Article  PubMed  Google Scholar 

  36. Roaten JB, Partrick DA, Bensard D et al. (2005) Survival in sentinel lymph node-positive pediatric melanoma. J Pediatr Surg 40: 988–992

    Article  PubMed  Google Scholar 

  37. Sasaki Y, Niu C, Makino R et al. (2004) BRAF point mutations in primary melanoma show different prevalences by subtype. J Invest Dermatol 123: 177–183

    Article  PubMed  CAS  Google Scholar 

  38. Sauter ER, Yeo UC, Stemm A von et al. (2002) Cyclin D1 is a candidate oncogene in cutaneous melanoma. Cancer Res 62: 3200–3206

    PubMed  CAS  Google Scholar 

  39. Takata M, Morita R, Takehara K (2000) Clonal heterogeneity in sporadic melanomas as revealed by loss-of-heterozygosity analysis. Int J Cancer 85: 492–497

    Article  PubMed  CAS  Google Scholar 

  40. Thompson FH, Emerson J, Olson S et al. (1995) Cytogenetics of 158 patients with regional or disseminated melanoma. Subset analysis of near-diploid and simple karyotypes. Cancer Genet Cytogenet 83: 93–104

    Article  PubMed  CAS  Google Scholar 

  41. Trent JM, Thompson FH, Ludwig C (1984) Evidence for selection of homogeneously staining regions in a human melanoma cell line. Cancer Res 44: 233–237

    PubMed  CAS  Google Scholar 

  42. Tronnier M, Alexander M, Neitmann M et al. (2000) Morphologische Veränderungen in melanozytären Nävi durch exogene Faktoren. Hautarzt 51: 561–566

    Article  PubMed  CAS  Google Scholar 

  43. Dijk M van, Sprenger S, Rombout P et al. (2003) Distinct chromosomal aberrations in sinonasal mucosal melanoma as detected by comparative genomic hybridization. Genes Chromosomes Cancer 36: 151–158

    Article  PubMed  CAS  Google Scholar 

  44. Veenhuizen KC, De Wit PE, Mooi WJ et al. (1997) Quality assessment by expert opinion in melanoma pathology: experience of the pathology panel of the Dutch Melanoma Working Party. J Pathol 182: 266–272

    Article  PubMed  CAS  Google Scholar 

  45. Whiteman DC, Watt P, Purdie DM et al. (2003) Melanocytic nevi, solar keratoses, and divergent pathways to cutaneous melanoma. J Natl Cancer Inst 95: 806–812

    Article  PubMed  Google Scholar 

  46. Wiltshire RN, Dennis TR, Sondak VK et al. (2001) Application of molecular cytogenetic techniques in a case study of human cutaneous metastatic melanoma. Cancer Genet Cytogenet 131: 97–103

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B.C. Bastian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, J., Bastian, B. Molekulargenetische Analyse bei der Diagnose melanozytärer Tumoren. Pathologe 28, 464–473 (2007). https://doi.org/10.1007/s00292-007-0944-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-007-0944-4

Schlüsselwörter

Keywords

Navigation