Skip to main content

Advertisement

Log in

Stabilized column generation for the temporal knapsack problem using dual-optimal inequalities

  • Regular Article
  • Published:
OR Spectrum Aims and scope Submit manuscript

Abstract

We present two new methods to stabilize column-generation algorithms for the temporal knapsack problem (TKP). Caprara et al. (INFORMS J Comp 25(3):560–571, 2013] were the first to suggest the use of branch-and-price algorithms for Dantzig–Wolfe reformulations of the TKP. Herein, the respective pricing problems are smaller-sized TKP that can be solved with a general-purpose MIP solver or by dynamic programming. Our stabilization methods are tailored to the TKP as they use (deep) dual-optimal inequalities, that is, inequalities known to be fulfilled by all (at least some) optimal dual solutions to the linear relaxation. Extensive computational tests reveal that both new stabilization techniques are helpful. Several previously unsolved instances are now solved to proven optimality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bartlett M, Frisch A, Hamadi Y, Miguel I, Tarim S, Unsworth C (2005) The temporal knapsack problem and its solution. In: Barták R, Milano M (eds) Integration of AI and OR techniques in constraint programming for combinatorial optimization problems, Lecture notes in computer science, vol 3524, Springer, Berlin, pp 34–48, doi:10.1007/11493853_5

  • Ben Amor H, Desrosiers J, Valério de Carvalho JM (2006) Dual-optimal inequalities for stabilized column generation. Oper Res 54(3):454–463. doi:10.1287/opre.1060.0278

    Article  Google Scholar 

  • Caprara A, Malaguti E, Toth P (2011) A freight service design problem for a railway corridor. Transp Sci 45(2):147–162. doi:10.1287/trsc.1100.0348

    Article  Google Scholar 

  • Caprara A, Furini F, Malaguti E (2013) Uncommon Dantzig-Wolfe reformulation for the temporal knapsack problem. INFORMS J Comput 25(3):560–571

    Article  Google Scholar 

  • Caprara A, Furini F, Malaguti E, Traversi E (2016) Solving the temporal knapsack problem via recursive Dantzig–Wolfe reformulation. Inf Process Lett 116(5):379–386. doi:10.1016/j.ipl.2016.01.008

    Article  Google Scholar 

  • Desaulniers G, Desrosiers J, Solomon M (eds) (2005) Column generation. Springer, New York

    Google Scholar 

  • Desrosiers J, Gauthier JB, Lübbecke ME (2014) Row-reduced column generation for degenerate master problems. Eur J Oper Res 236(2):453–460. doi:10.1016/j.ejor.2013.12.016

    Article  Google Scholar 

  • Dolan ED, Moré JJ (2002) Benchmarking optimization software with performance profiles. Math Program 91(2):201–213. doi:10.1007/s101070100263

    Article  Google Scholar 

  • du Merle O, Villeneuve D, Desrosiers J, Hansen P (1999) Stabilized column generation. Discrete Math 194:229–237

    Article  Google Scholar 

  • Gauthier JB, Desrosiers J, Lübbecke ME (2016) Tools for primal degenerate linear programs. EURO J Transport Logist 5(2):161–204. doi:10.1007/s13676-015-0077-5

  • Gilmore P, Gomory R (1961) A linear programming approach to the cutting-stock problem. Oper Res 9:849–859

    Article  Google Scholar 

  • Gschwind T, Irnich S (2016) Dual inequalities for stabilized column generation revisited. INFORMS J Comput 28(1):175–194

    Article  Google Scholar 

  • Hiriart-Urruty JB, Lemaréchal C (1993) Convex analysis and minimization algorithms, part 2: advanced theory and bundle methods, Grundlehren der mathematischen Wissenschaften, vol 306. Springer, Berlin

    Google Scholar 

  • Kellerer H, Pferschy U, Pisinger D (2004) Knapsack problems. Springer, Berlin

    Book  Google Scholar 

  • Lee C, Park S (2011) Chebyshev center based column generation. Discrete Appl Math 159(18):2251–2265. doi:10.1016/j.dam.2011.08.009

    Article  Google Scholar 

  • Lübbecke M, Desrosiers J (2005) Selected topics in column generation. Oper Res 53(6):1007–1023

    Article  Google Scholar 

  • Marsten R, Hogan W, Blankenship J (1975) The boxstep method for large-scale optimization. Oper Res 23:389–405

    Article  Google Scholar 

  • Poggi de Aragao M, Uchoa E (2003) Integer program reformulation for robust branch-and-cut-and-price algorithms. In: Proc. Conf. Math. Program in Rio: A Conference in Honour of Nelson Maculan, Rio de Janeiro, Brazil, pp 56–61

  • Rousseau LM, Gendreau M, Feillet D (2007) Interior point stabilization for column generation. Oper Res Lett 35(5):660–668. doi:10.1016/j.orl.2006.11.004

    Article  Google Scholar 

  • Valério de Carvalho JM (2005) Using extra dual cuts to accelerate column generation. INFORMS J Comput 17(2):175–182

    Article  Google Scholar 

  • Vanderbeck F (2005) Implementing mixed integer column generation. In: Desaulniers G, Desrosiers J, Solomon M (eds) Column generation. Springer, New York, pp 331–358 (chap 12)

    Chapter  Google Scholar 

Download references

Acknowledgments

This research was funded by the Deutsche Forschungsgemeinschaft (DFG) under Grant No. IR 122/6-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Irnich.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 253 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gschwind, T., Irnich, S. Stabilized column generation for the temporal knapsack problem using dual-optimal inequalities. OR Spectrum 39, 541–556 (2017). https://doi.org/10.1007/s00291-016-0463-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00291-016-0463-x

Keywords

Navigation