Skip to main content
Log in

Performance analysis of polymer bulk heterojunction solar cells with plasmonic nanoparticles embedded into the P3HT:PC61BM active layer using the FDTD method

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The increase in optical absorption in organic solar cells based on poly (3-hexylthiophene): phenyl-C61-butyric acid methyl ester (P3HT:PC61BM), is examined in this study utilizing the finite difference time domain method and Lumerical software to evaluate field distribution and light absorption in the active layer in terms of wavelength. The plasmonic impact on the metal surface, as well as the positioning of plasmonic crystals in different areas, as revealed by finding a favorable site for a plasmonic crystal and refining the structure, results in a significant increase in absorption in the optical region. The impact of active layer thickness, the distance between neighboring nanoparticles, and plasmon crystal on the active layer of the polymer solar cell were examined. The proposed triangular, wire, rectangle, and multi-period triangular Ag nanoparticles optical model can explain the optical absorption increase via localized surface plasmon resonance (LSPR) modes and get a better knowledge of the shape characteristics of Ag nanoparticles, which are crucial in determining the broadband absorption phenomena in plasmonic organic solar cells. When the plasmonic solar cell's power conversion efficiency was compared to that of solar cells without Ag nanoparticles, a significant increase was seen. The strong alternating electromagnetic field around the different plasmonic nanoparticles resulting from the LSPR suggested by the Ag plasmonic nanocrystals increased the intrinsic optical absorption in the active layer P3HT:PC61BM. The short-circuit current varied from 7.3 to 26.9 mA/cm2 based on the photovoltaic characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Duan L, Uddin A (2020) Progress in stability of organic solar cells. Adv Sci 7(11):1903259

    CAS  Google Scholar 

  2. Dong S et al (2019) Suppressing the excessive aggregation of nonfullerene acceptor in blade-coated active layer by using n-type polymer additive to achieve large-area printed organic solar cells with efficiency over 15%. EcoMat 1(1):e12006

    CAS  Google Scholar 

  3. Ahn S, Rourke D, Park W (2016) Plasmonic nanostructures for organic photovoltaic devices. J Opt 18(3):033001

    Google Scholar 

  4. Tang CW (1986) Two-layer organic photovoltaic cell. Appl Phys Lett 48(2):183–185

    CAS  Google Scholar 

  5. Gao Y et al (2018) An asymmetrical polymer based on thieno [2, 3-f] benzofuran for efficient fullerene-free polymer solar cells.". ACS Applied Energy Materials 1(5):1888–1892

    CAS  Google Scholar 

  6. Cho H-E, Seok HC, Sung-Min L (2020) Embedded plasmonic nanoprisms in polymer solar cells: band-edge resonance for photocurrent enhancement. APL Mater 8(4):041116

    CAS  Google Scholar 

  7. Fan Q et al (2021) Multi-selenophene-containing narrow bandgap polymer acceptors for all-polymer solar cells with over 15% efficiency and high reproducibility. Angew Chem Int Ed 60(29):15935–15943

    CAS  Google Scholar 

  8. Chen X et al (2021) Nickel and cobalt sulfide-based nanostructured materials for electrochemical energy storage devices. Chem Eng J 409:127237

    CAS  Google Scholar 

  9. Peet J et al (2007) Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat Mater 6(7):497–500

    CAS  PubMed  Google Scholar 

  10. Park SH et al (2009) Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photon 3(5):297–302

    CAS  Google Scholar 

  11. Chaudhari MK, Singh BK, Pandey PC (2017) Enhanced light trapping in dye-sensitized solar cell by coupling to 1D photonic crystal and accounting for finite coherence length. J Mod Opt 64(21):2385–2393

    CAS  Google Scholar 

  12. Sharma N, Gupta SK, Negi CMS (2019) Influence of active layer thickness on photovoltaic performance of PTB7:PC70BM bulk heterojunction solar cell. Superlattices Microstruct 135:106278

    CAS  Google Scholar 

  13. Hauch JA et al (2008) Flexible organic P3HT:PCBM bulk-heterojunction modules with more than 1year outdoor lifetime. Solar Energy Mater Solar Cells 92(7):727–731

    CAS  Google Scholar 

  14. Yablonovitch E, Owen DM, Sarah RK (2012) The opto-electronic physics that broke the efficiency limit in solar cells. In: 2012 38th IEEE photovoltaic specialists conference. IEEE

  15. Andersson V, Kristofer T, Olle I (2008) Optical modeling of a folded organic solar cell. J Appl Phys 103(9):094520

    Google Scholar 

  16. Shabani L, Mohammadi A, Jalali T (2022) Numerical study of plasmonic effects of Ag nanoparticles embedded in the active layer on performance polymer organic solar cells. Plasmonics 17(2):491–504

    CAS  Google Scholar 

  17. Wong W-Y et al (2011) Metallated conjugated polymers as a new avenue towards high-efficiency polymer solar cells. Mater Sustain Energy Collect Peer-Rev Res Rev Articles Nat Publish Group 6:51–57

    Google Scholar 

  18. Zhang Z et al (2013) Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano Lett 13(1):14–20

    CAS  PubMed  Google Scholar 

  19. Chen X et al (2008) Plasmon enhancement of bulk heterojunction organic photovoltaic devices by electrode modification. Appl Phys Lett 93(12):344

    Google Scholar 

  20. Zhang H et al (2018) Over 14% efficiency in organic solar cells enabled by chlorinated nonfullerene small-molecule acceptors. Adv Mater 30(28):1800613

    Google Scholar 

  21. Hadmojo WT et al (2019) Performance optimization of parallel-like ternary organic solar cells through simultaneous improvement in charge generation and transport. Adv Funct Mater 29(14):1808731

    Google Scholar 

  22. Zheng Z et al (2018) A highly efficient non-fullerene organic solar cell with a fill factor over 0.80 enabled by a fine-tuned hole-transporting layer. Adv Mater 30(34):1801801

    Google Scholar 

  23. Li Q et al (2017) Decahedral-shaped Au nanoparticles as plasmonic centers for high performance polymer solar cells. Org Electron 43:33–40

    CAS  Google Scholar 

  24. Chan K et al (2017) Plasmonics in organic and perovskite solar cells: optical and electrical effects. Adv Opt Mater 5(6):1600698

    Google Scholar 

  25. Krebs FC et al (2013) Freely available PSC—the fast way to progress. Energy Technol 1(7):378–381

    Google Scholar 

  26. Peer A, Biswas R (2014) Nanophotonic organic solar cell architecture for advanced light trapping with dual photonic crystals. ACS Photon 1(9):840–847

    CAS  Google Scholar 

  27. Shen P et al (2018) High-efficiency and high-color-rendering-index semitransparent polymer solar cells induced by photonic crystals and surface plasmon resonance. ACS Appl Mater Interfaces 10(7):6513–6520

    CAS  PubMed  Google Scholar 

  28. Neubauer A et al (2016) Simple down conversion nano-crystal coatings for enhancing Silicon-solar cells efficiency. AIMS Mater Sci 3(3):1256–1265

    CAS  Google Scholar 

  29. Ringe E et al (2010) Unraveling the effects of size, composition, and substrate on the localized surface plasmon resonance frequencies of gold and silver nanocubes: a systematic single-particle approach. J Phys Chem C 114(29):12511–12516

    CAS  Google Scholar 

  30. Smirnov V et al (2021) Transmitting surface plasmon polaritons across nanometer-sized gaps by optical near-field coupling. ACS Photon 8(3):832–840

    CAS  Google Scholar 

  31. Riede M, Spoltore D, Leo K (2021) Organic solar cells—the path to commercial success. Adv Energy Mater 11(1):2002653

    CAS  Google Scholar 

  32. Nelson J (2011) Polymer: fullerene bulk heterojunction solar cells. Mater Today 14(10):462–470

    CAS  Google Scholar 

  33. Wang J et al (2021) Increasing donor-acceptor spacing for reduced voltage loss in organic solar cells. Nat Commun 12(1):1–9

    Google Scholar 

  34. Reyes-Reyes M, Kim K, Carroll DL (2005) High-efficiency photovoltaic devices based on annealed poly (3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6, 6) C 61 blends. Appl Phys Lett 87(8):083506

    Google Scholar 

  35. Reyes-Reyes M et al (2005) Meso-structure formation for enhanced organic photovoltaic cells. Org Lett 7(26):5749–5752

    CAS  PubMed  Google Scholar 

  36. Mehboob MY et al (2021) Role of acceptor guests in tuning optoelectronic properties of benzothiadiazole core based non-fullerene acceptors for high-performance bulk-heterojunction organic solar cells. J Mol Model 27(8):1–16

    Google Scholar 

  37. Chidichimo G, Luigi F (2010) Organic solar cells: problems and perspectives. Int J Photoenergy 2010

  38. Abass A et al (2011) Angle insensitive enhancement of organic solar cells using metallic gratings. J Appl Phys 109(2):023111

    Google Scholar 

  39. Kang M-G et al (2010) Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes. Adv Mater 22(39):4378–4383

    CAS  PubMed  Google Scholar 

  40. Chalh M et al (2016) Plasmonic Ag nanowire network embedded in zinc oxide nanoparticles for inverted organic solar cells electrode. Solar Energy Mater Solar Cells 152:34–41

    CAS  Google Scholar 

  41. Kim T et al (2018) Nanoparticle-enhanced silver-nanowire plasmonic electrodes for high-performance organic optoelectronic devices. Adv Mater 30(28):1800659

    Google Scholar 

  42. Hamdan KS et al (2020) Surface plasmon resonance of silver nano-dendrites improved light absorption in an organic photovoltaic active layer. Micro Nano Lett 15(12):866–871

    CAS  Google Scholar 

  43. Mola GT et al (2021) Local surface plasmon resonance assisted energy harvesting in thin film organic solar cells. J Alloys Compd 856:158172

    CAS  Google Scholar 

  44. Paul S et al (2017) Organic photovoltaic cells using MWCNTs. New Carbon Mater 32(1):27–34

    CAS  Google Scholar 

  45. Yee K (1966) Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Antennas Propag 14(3):302–307

    Google Scholar 

  46. N’Konou K, Philippe T (2019) Optical absorption modeling of plasmonic organic solar cells embedding Ag–SiO2 core–shell nanoparticles. Noble Met-Met Oxide Hybrid Nanopart, 265–282

  47. Sullivan DM (2000) Electromagnetic simulation using the FDTD method. Wiley

  48. Umashankar K, Taflove A (1982) A novel method to analyze electromagnetic scattering of complex objects. IEEE Trans Electromagn Compat 4:397–405

    Google Scholar 

  49. Moreno F et al (2008) Interaction of nanoparticles with substrates: effects on the dipolar behaviour of the particles. Opt Express 16(17):12487–12504

    CAS  PubMed  Google Scholar 

  50. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, Berlin

    Google Scholar 

  51. Kulkarni AP et al (2010) Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms. Nano Lett 10(4):1501–1505

    CAS  PubMed  Google Scholar 

  52. Rai P (2019) Plasmonic noble metal@ metal oxide core–shell nanoparticles for dye-sensitized solar cell applications. Sustain Energy Fuels 3(1):63–91

    CAS  Google Scholar 

  53. Abass A et al (2012) Dual-interface gratings for broadband absorption enhancement in thin-film solar cells. Phys Rev B 85(11):115449

    Google Scholar 

  54. Kluczyk K et al (2019) On modeling of plasmon-induced enhancement of the efficiency of solar cells modified by metallic nano-particles. Nanomaterials 9(1):3

    Google Scholar 

  55. N’konou K, Philippe T (2017) Optical absorption enhancement by inserting ZnO optical spacer in plasmonic organic solar cells. J Nanophoton 12(1):012502

    Google Scholar 

  56. Vedraine S et al (2011) Intrinsic absorption of plasmonic structures for organic solar cells. Solar Energy Mater Solar Cells 95:S57–S64

    CAS  Google Scholar 

  57. Lee J-Y, Peumans P (2010) The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer. Opt Express 18(10):10078–10087

    CAS  PubMed  Google Scholar 

  58. Nair AT, Shamjid PP, Reddy VS (2018) Influence of Ag nanostructure location on the absorption enhancement in polymer solar cells. ACS Appl Mater Interfaces 10(38):32483–32491

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to the Persian Gulf University Research Council for continuous support.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

A. Mohammadi designed and directed the project and, with L. Shabani, contributed to the design and implementation of the research, and A. Mohammadi, L. Shabani, T. Jalali contributed to the analysis of the results and to the writing of the manuscript.

Corresponding author

Correspondence to Ahmad Mohammadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Ethical approval

This paper does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabani, L., Mohammadi, A. & Jalali, T. Performance analysis of polymer bulk heterojunction solar cells with plasmonic nanoparticles embedded into the P3HT:PC61BM active layer using the FDTD method. Polym. Bull. 80, 9589–9610 (2023). https://doi.org/10.1007/s00289-022-04521-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04521-7

Keywords

Navigation