Skip to main content
Log in

Polymer pollution and its solutions with special emphasis on Poly (butylene adipate terephthalate (PBAT))

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The globe is facing the ever-increasing challenge of plastic pollution due to the single-use of plastic-based packaging material. The plastic material is being continuously dumped into the natural environment which causes serious harm to the entire ecosystem. Polymer degradation in nature is very difficult, so the use of biodegradable polymers instead of conventional polymers can mitigate this issue. In recent years, keeping plastic hazards in mind the production and implication of biodegradable plastics have significantly increased. This review focus on the use of poly (butylene adipate terephthalate) (PBAT), which is one of the most prospective and prevalent biodegradable polymers instead of non-biodegradable polymers. PBAT can be degraded by biological (actinomycetes, bacteria, fungus, and physical agents (biochemical processes) in aerobic as well as anaerobic environments defined by ASTM standards. Due to the advancement in molecular biology, many studies have reported specific microbes that can effectively degrade PBAT. Aliphatic polyesters undergo hydrolytic cleavage of ester groups, so they can be easily degraded by microorganisms. Microorganisms utilize polymer as their nutrient source, using this approach microorganisms can be isolated. Due to the good mechanical properties and biodegradability, aliphatic–aromatic polymers are being widely commercialized. Feed ratios and curing conditions of monomers are very important for controlling mechanical properties, degradation rates, crystallinity, hydrophilicity, and biocompatibility of polymers. By considering published and current studies, we focused on synthesis, biodegradation mechanism, factors affecting the rate of biodegradation, application of biodegradable polymers especially emphasizing the synthesis, mechanical properties degradation mechanism of PBAT (Polybutylene adipate terephthalate) (biodegradable polymer).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Rujnić-Sokele M, Pilipović A (2017) Challenges and opportunities of biodegradable plastics: a mini review. Waste Manag Res 35(2):132–140. https://doi.org/10.1177/0734242X16683272

    Article  PubMed  Google Scholar 

  2. Kanwal A, Zhang M, Sharaf F, Li C (2021) Enzymatic degradation of poly (butylene adipate co-terephthalate) (PBAT) copolymer using lipase B from Candida antarctica (CALB) and effect of PBAT on plant growth. Polym Bull. https://doi.org/10.1007/s00289-021-03946-w

    Article  Google Scholar 

  3. Bond T, Ferrandiz-Mas V, Felipe-Sotelo M, van Sebille E (2018) The occurrence and degradation of aquatic plastic litter based on polymer physicochemical properties: a review. Crit Rev Environ Sci Technol 48(7–9):685–722. https://doi.org/10.1080/10643389.2018.1483155

    Article  Google Scholar 

  4. Brennecke D, Duarte B, Paiva F, Caçador I, Canning-Clode J (2016) Microplastics as vector for heavy metal contamination from the marine environment. Estuar Coast Shelf Sci 178:189–195. https://doi.org/10.1016/j.ecss.2015.12.003

    Article  CAS  Google Scholar 

  5. Meereboer KW, Misra M, Mohanty AK (2020) Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites. Green Chem 22(17):5519–5558. https://doi.org/10.1039/d0gc01647k

    Article  CAS  Google Scholar 

  6. Li LY et al (2020) Biodegradable polymers: new alternatives using nanocellulose and agroindustrial residues. Microsc. Microanal 26(S2):356–359. https://doi.org/10.1017/s1431927620014373

    Article  Google Scholar 

  7. Bambino K, Chu J (2017) Zebrafish in Toxicology and Environmental Health. Curr Topics Develop Biol 124:331–67

    Article  CAS  Google Scholar 

  8. Arrieta MP, Samper MD, Aldas M, López J (2017) On the use of PLA-PHB blends for sustainable food packaging applications. Materials 10(9):1–26. https://doi.org/10.3390/ma10091008

    Article  CAS  Google Scholar 

  9. Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3(7):e1700782. https://doi.org/10.1126/sciadv.1700782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li P, Wang X, Su M, Zou X, Duan L, Zhang H (2020) Characteristics of plastic pollution in the environment: a review. Bull Environ Contam Toxicol 107(4):577–584. https://doi.org/10.1007/s00128-020-02820-1

    Article  CAS  PubMed  Google Scholar 

  11. Ruggero F, Gori R, Lubello C (2019) Methodologies to assess biodegradation of bioplastics during aerobic composting and anaerobic digestion: a review. Waste Manag Res 37(10):959–975. https://doi.org/10.1177/0734242X19854127

    Article  CAS  PubMed  Google Scholar 

  12. Velzeboer I, Kwadijk CJAF, Koelmans AA (2014) Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes, and fullerenes. Environ Sci Technol 48(9):4869–4876. https://doi.org/10.1021/es405721v

    Article  CAS  PubMed  Google Scholar 

  13. Green MR, Sambrook J (2019) Agarose gel electrophoresis. Cold Spring Harb Protoc 2019(1):87–94. https://doi.org/10.1101/pdb.prot100404

    Article  Google Scholar 

  14. Massadeh MI, Sabra FM (2011) Production and characterization of lipase from bacillus stearothermophilus. African J Biotechnol 10(61):13139–13146. https://doi.org/10.4314/ajb.v10i61

    Article  CAS  Google Scholar 

  15. Roy S, Rahim JW (2020) Curcumin incorporated Poly (Butylene adipate-co-terephthalate) film with improved water vapor barrier and antioxidant properties. Materials 13(19):4369. https://doi.org/10.3390/ma13194369

    Article  CAS  Google Scholar 

  16. Dris R et al (2017) A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environ Pollut 221:453–458. https://doi.org/10.1016/j.envpol.2016.12.013

    Article  CAS  PubMed  Google Scholar 

  17. Manavitehrani I, Fathi A, Badr H, Daly S, Shirazi AN, Dehghani F (2016) Biomedical Applications of Biodegradable Polyesters. Polym 8(1):20. https://doi.org/10.3390/POLYM8010020

    Article  Google Scholar 

  18. Elvers D, Song CH, Steinbüchel A, Leker J (2016) technology trends in biodegradable polymers: evidence from patent analysis. Polym Rev 56(4):584–606. https://doi.org/10.1080/15583724.2015.1125918

    Article  CAS  Google Scholar 

  19. De Hoe GX et al (2019) Photochemical transformation of Poly(butylene adipate- co-terephthalate) and its effects on Enzymatic Hydrolyzability. Environ Sci Technol 53(5):2472–2481. https://doi.org/10.1021/acs.est.8b06458

    Article  CAS  PubMed  Google Scholar 

  20. Wei D, Wang H, Xiao H, Zheng A, Yang Y (2015) Morphology and mechanical properties of poly(butylene adipate-co-terephthalate)/potato starch blends in the presence of synthesized reactive compatibilizer or modified poly(butylene adipate-co-terephthalate). Carbohydr Polym 123:275–282. https://doi.org/10.1016/j.carbpol.2015.01.058

    Article  CAS  PubMed  Google Scholar 

  21. Pencreac’h G, Baratti JC (1996) Hydrolysis of p-nitrophenyl palmitate in n-heptane by the Pseudomonas cepacia lipase: A simple test for the determination of lipase activity in organic media. Enzyme Microb Technol 18(6):417–422. https://doi.org/10.1016/0141-0229(95)00120-4

    Article  Google Scholar 

  22. Deep challenges for China’s war on water pollution – ScienceDirect. (2019), p 2019 [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0269749116310363

  23. Pinheiro IF et al (2017) Mechanical, rheological and degradation properties of PBAT nanocomposites reinforced by functionalized cellulose nanocrystals. Eur Polym J 97:356–365. https://doi.org/10.1016/j.eurpolymj.2017.10.026

    Article  CAS  Google Scholar 

  24. Ferreira FV, Cividanes LS, Gouveia RF, Lona LMF (2019) An overview on properties and applications of poly(butylene adipate-co-terephthalate)–PBAT based composites. Polym Eng Sci 59(s2):E7–E15. https://doi.org/10.1002/pen.24770

    Article  CAS  Google Scholar 

  25. Garcia-Segura S, Lanzarini-Lopes M, Hristovski K, Westerhoff P (2018) Electrocatalytic reduction of nitrate: fundamentals to full-scale water treatment applications. Appl Catal B Environ 236:546–568. https://doi.org/10.1016/j.apcatb.2018.05.041

    Article  CAS  Google Scholar 

  26. A. Künkel et al., (2016) Polymers, Biodegradable. Ullmann’s Encyclopedia of Industrial Chemistry

  27. Wang F, Wong CS, Chen D, Lu X, Wang F, Zeng EY (2018) Interaction of toxic chemicals with microplastics: a critical review. Water Res 139:208–219. https://doi.org/10.1016/j.watres.2018.04.003

    Article  CAS  PubMed  Google Scholar 

  28. Bai M, Li D (2020) Quantity of plastic waste input into the ocean from China based on a material flow analysis model. Anthr Coasts 3(1):1–5. https://doi.org/10.1139/anc-2018-0028

    Article  Google Scholar 

  29. Kasuya KI et al (2009) Characterization of a mesophilic aliphatic-aromatic copolyester-degrading fungus. Polym Degrad Stab 94(8):1190–1196. https://doi.org/10.1016/j.polymdegradstab.2009.04.013

    Article  CAS  Google Scholar 

  30. Mahon AM et al (2017) Microplastics in sewage sludge: Effects of treatment. Environ Sci Technol 51(2):810–818. https://doi.org/10.1021/acs.est.6b04048

    Article  CAS  PubMed  Google Scholar 

  31. Dilkes-Hoffman LS, Lane JL, Grant T, Pratt S, Lant PA, Laycock B (2018) Environmental impact of biodegradable food packaging when considering food waste. J Clean Prod 180:325–334. https://doi.org/10.1016/j.jclepro.2018.01.169

    Article  CAS  Google Scholar 

  32. Biundo A et al (2016) Characterization of a poly(butylene adipate-co-terephthalate)-hydrolyzing lipase from Pelosinus fermentans. Appl Microbiol Biotechnol 100(4):1753–1764. https://doi.org/10.1007/s00253-015-7031-1

    Article  CAS  PubMed  Google Scholar 

  33. Kakadellis S, Harris ZM (2020) Don’t scrap the waste: the need for broader system boundaries in bioplastic food packaging life-cycle assessment – a critical review. J Clean Prod 274:122831. https://doi.org/10.1016/j.jclepro.2020.122831

    Article  Google Scholar 

  34. Kumar S, Maiti P (2015) Understanding the controlled biodegradation of polymers using nanoclays. Polymer 76:25–33. https://doi.org/10.1016/j.polymer.2015.08.044

    Article  CAS  Google Scholar 

  35. Yang Y, Yang J, Jiang L (2016) Comment on "a bacterium that degrades and assimilates poly(ethylene terephthalate). Science 353(6301):759. https://doi.org/10.1126/science.aaf8305

    Article  CAS  PubMed  Google Scholar 

  36. Witt U, Einig T, Yamamoto M, Kleeberg I, Deckwer WD, Müller RJ (2001) Biodegradation of aliphatic-aromatic copolyesters: evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates. Chemosphere 44(2):289–299. https://doi.org/10.1016/S0045-6535(00)00162-4

    Article  CAS  PubMed  Google Scholar 

  37. Kumar R, Josse C, Anandjiwala R (2014) Dry and wet mechanical properties of polylactic acid in the presence of canola oil. Asia-Pacific J Chem Eng 9(3):382–389. https://doi.org/10.1002/apj.1807

    Article  CAS  Google Scholar 

  38. Ferreira FV, Cividanes LS, Gouveia RF, Lona LMF (2019) An overview on properties and applications of poly(butylene adipate-co-terephthalate)–PBAT based composites. Polym Eng Sci 59(s2):E7–E15. https://doi.org/10.1002/pen.24770

    Article  CAS  Google Scholar 

  39. Bubpachat T, Sombatsompop N, Prapagdee B (2018) Isolation and role of polylactic acid-degrading bacteria on degrading enzymes productions and PLA biodegradability at mesophilic conditions. Polym Degrad Stab 152:75–85. https://doi.org/10.1016/j.polymdegradstab.2018.03.023

    Article  CAS  Google Scholar 

  40. Qin JX et al (2016) New insight into the difference of PC lipase-catalyzed degradation on poly(butylene succinate)-based copolymers from molecular levels. RSC Adv 6(22):17896–17905. https://doi.org/10.1039/c5ra13738a

    Article  CAS  Google Scholar 

  41. Kargarzadeh H et al (2018) Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites. Prog Polym Sci. https://doi.org/10.1016/j.progpolymsci.2018.07.008

    Article  Google Scholar 

  42. Costa ARM, Reul LTA, Sousa FM, Ito EN, Carvalho LH, Canedo EL (2018) Degradation during processing of vegetable fiber compounds based on PBAT/PHB blends. Polym Test 69:266–275. https://doi.org/10.1016/j.polymertesting.2018.05.031

    Article  CAS  Google Scholar 

  43. Šerá J, Kadlečková M, Fayyazbakhsh A, Kučabová V, Koutný M (2020) Occurrence and analysis of thermophilic poly(Butylene adipate-co-terephthalate)-degrading microorganisms in temperate zone soils. Int J Mol Sci 21(21):1–17. https://doi.org/10.3390/ijms21217857

    Article  CAS  Google Scholar 

  44. Kosior E, Mitchell J (2020) Current industry position on plastic production and recycling. Elsevier Inc, UK

    Book  Google Scholar 

  45. Aso Y, Aso Yuji (2015) Department of biobased materials science. Kyoto Institute of Technology, Kyoto, Japan

    Google Scholar 

  46. Waste-to-energy compared to fossil fuels for equal amounts of energy. Delaware solid waste authority.

  47. Ferreira FV et al (2018) How do cellulose nanocrystals affect the overall properties of biodegradable polymer nanocomposites: a comprehensive review. Eur Polym J 108:274–285. https://doi.org/10.1016/j.eurpolymj.2018.08.045

    Article  CAS  Google Scholar 

  48. Biswas M, Sahoo S, Maiti S, Roy S (2016) Isolation of lipase producing bacteria and determination of their lipase activity from a vegetative oil contaminated soil. Int Res J Basic Appl Sci 1(2):4–7

    Google Scholar 

  49. Haider TP, Völker C, Kramm J, Landfester K, Wurm FR (2019) Plastics of the future? the impact of biodegradable polymers on the environment and on society. Angew Chemie - Int Ed 58(1):50–62. https://doi.org/10.1002/anie.201805766

    Article  CAS  Google Scholar 

  50. Laycock B, Halley P, Pratt S, Werker A, Lant P (2014) The chemomechanical properties of microbial polyhydroxyalkanoates. Progress Polym Sci 39(2):397–442. https://doi.org/10.1016/j.progpolymsci.2013.06.008

    Article  Google Scholar 

  51. Ayilara MS, Olanrewaju OS, Babalola OO (2020) Waste management through composting : challenges and potentials. Sustainability 12(11):4456

    Article  CAS  Google Scholar 

  52. Manavitehrani I, Fathi A, Badr H, Daly S, Shirazi AN, Dehghani F (2016) Biomedical applications of biodegradable polyesters. Polymers. https://doi.org/10.3390/polym8010020

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kunduru KR, Basu A, Domb AJ (2016) Biodegradable polymers: medical applications. Encyclopedia of polymer science and technology. John Wiley & Sons, USA, pp 1–22

    Google Scholar 

  54. Ogunola OS, Onada OA, Falaye AE (2018) Mitigation measures to avert the impacts of plastics and microplastics in the marine environment (a review). Environ Sci Pollut Res 25(10):9293–9310

    Article  CAS  Google Scholar 

  55. Tham WH, Wahit MU, Abdul Kadir MR, Wong TW, Hassan O (2016) Polyol-based biodegradable polyesters: a short review. Rev Chem Eng 32(2):201–221. https://doi.org/10.1515/revce-2015-0035

    Article  CAS  Google Scholar 

  56. Schneiderman DK et al (2016) Chemically recyclable biobased polyurethanes. ACS Macro Lett 5(4):515–518. https://doi.org/10.1021/acsmacrolett.6b00193

    Article  CAS  PubMed  Google Scholar 

  57. Satti SM, Shah AA (2020) Polyester-based biodegradable plastics: an approach towards sustainable development. Lett Appl Microbiol 70(6):413–430. https://doi.org/10.1111/lam.13287

    Article  CAS  PubMed  Google Scholar 

  58. Ulery BD, Nair LS, Laurencin CT (2011) Biomedical applications of biodegradable polymers. J Polym Sci, Part B: Polym Phys 49(12):832–864. https://doi.org/10.1002/polb.22259

    Article  CAS  Google Scholar 

  59. Emadian SM, Onay TT, Demirel B (2017) Biodegradation of bioplastics in natural environments. Waste Manag 59:526–536. https://doi.org/10.1016/j.wasman.2016.10.006

    Article  CAS  PubMed  Google Scholar 

  60. Yang Y et al (2019) Plastics in the marine environment are reservoirs for antibiotic and metal resistance genes. Environ Int 123:79–86. https://doi.org/10.1016/j.envint.2018.11.061

    Article  CAS  PubMed  Google Scholar 

  61. “pbat review - Google Search.” https://www.google.com/search?sxsrf=ALeKk03gLfB7NPV8WV4T1-zgjcjf-GpFEA%3A1604649537047&ei=QQKlX6uhAvWl1fAPrfa3kAw&q=pbat+review&oq=pbat+REVI&gs_lcp=CgZwc3ktYWIQARgAMgkIABDJAxAWEB46BAgAEEc6BAgjECc6CAgAEMkDEJECOgQIABBDOgIIADoFCAAQyQM6BggAEBYQHjoICAAQFhAKEB5QjA5YpRhghyloAHACeACAAZYEiAGnEJIBBzMtMy4xLjGYAQCgAQGqAQdnd3Mtd2l6yAEIwAEB&sclient=psy-ab (accessed Nov. 06, 2020).

  62. Mintenig SM, Int-Veen I, Löder MGJ, Primpke S, Gerdts G (2017) Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. Water Res 108:365–372. https://doi.org/10.1016/j.watres.2016.11.015

    Article  CAS  PubMed  Google Scholar 

  63. Ghatge S, Yang Y, Ahn JH, Hur HG (2020) Biodegradation of polyethylene: a brief review. Appl Biol Chem 63(1):27. https://doi.org/10.1186/s13765-020-00511-3

    Article  CAS  Google Scholar 

  64. Carbonell-Verdu A et al (2018) Manufacturing and compatibilization of PLA/PBAT binary blends by cottonseed oil-based derivatives. Express Polym Lett 12(9):808–823. https://doi.org/10.3144/expresspolymlett.2018.69

    Article  CAS  Google Scholar 

  65. Zhang M, Miao Z, Wang L, Lawson T, Kanwal A (2019) Poly(butylene succinate-co-salicylic acid) copolymers and their effect on promoting plant growth. R Soc Open Sci 6(7):190504. https://doi.org/10.1098/rsos.190504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. “biodegradable plastic - Google Search.” https://www.google.com/search?sxsrf=ALeKk02gB4KKZiF765jjpJqx1e9yFJ-Ahw%3A1604649211018&ei=-wClX59PsfXGA7CAj-AH&q=biodegradable+plastic+&oq=biodegradable+plastic+&gs_lcp=CgZwc3ktYWIQAzIECAAQRzIECAAQRzIECAAQRzIECAAQRzIECAAQRzIECAAQRzIECAAQRzIECAAQR1CLsgFYi7IBYMK0AWgAcAJ4AIABAIgBAJIBAJgBAKABAaoBB2d3cy13aXrIAQjAAQE&sclient=psy-ab&ved=0ahUKEwjfuNiRuO3sAhWxunEKHTDAA3wQ4dUDCA0&uact=5 (accessed Nov. 06, 2020).

  67. Kubowicz S, Booth AM (2017) Biodegradability of Plastics: Challenges and Misconceptions. Environ Sci Technol 51(21):12058–12060. https://doi.org/10.1021/acs.est.7b04051

    Article  CAS  PubMed  Google Scholar 

  68. Wackett LP (2019) Bio-based and biodegradable plastics: an annotated selection of World Wide Web sites relevant to the topics in microbial biotechnology. Microbial Biotechnol 12(6):1492–1493. https://doi.org/10.1111/1751-7915.13502

    Article  Google Scholar 

  69. Tabacco E, Ferrero F, Borreani G (2020) Feasibility of utilizing biodegradable plastic film to cover corn silage under farm conditions. Appl Sci 10(8):2803. https://doi.org/10.3390/APP10082803

    Article  CAS  Google Scholar 

  70. Guo B, Ma PX (2014) Synthetic biodegradable functional polymers for tissue engineering: a brief review. Sci China Chem. https://doi.org/10.1007/s11426-014-5086-y

    Article  Google Scholar 

  71. Gupta R, Gupta N, Rathi P (2004) Bacterial lipases: An overview of production, purification and biochemical properties. Appl Microbiol Biotechnol 64(6):763–781. https://doi.org/10.1007/s00253-004-1568-8

    Article  CAS  PubMed  Google Scholar 

  72. Haider TP, Völker C, Kramm J, Landfester K, Wurm FR (2019) Plastics of the future? the impact of biodegradable polymers on the environment and on society. Angew Chem Int Ed 58(1):50–62. https://doi.org/10.1002/anie.201805766

    Article  CAS  Google Scholar 

  73. I. B. Guide and I. Biosciences, Innova Biosciences Guide. 44(0), [Online]. Available: https://innovabiosciences.com/images/stories/innova/pdfs/Enzyme_unit_definitions_and_assay_design.pdf.

  74. Kijchavengkul T, Auras R, Rubino M, Selke S, Ngouajio M, Fernandez RT (2010) Biodegradation and hydrolysis rate of aliphatic aromatic polyester. Polym Degrad Stab 95(12):2641–2647. https://doi.org/10.1016/j.polymdegradstab.2010.07.018

    Article  CAS  Google Scholar 

  75. L. Sukrakanchana, S. Sukkhum, and P. Somyoonsap, 2011 Isolation of bioplastics-degrading bacteria from compost soil in Thailand. 1: 252–253

  76. La Mantia FP, Morreale M, Botta L, Mistretta MC, Ceraulo M, Scaffaro R (2017) Degradation of polymer blends: a brief review. Polym Degrad Stab 145:79–92. https://doi.org/10.1016/j.polymdegradstab.2017.07.011

    Article  CAS  Google Scholar 

  77. European Commission, 2018 A European strategy for plastics. Eur Com, p 24, [Online]. Available: http://ec.europa.eu/environment/circular-economy/pdf/plastics-strategy-brochure.pdf%0Ahttp://ec.europa.eu/environment/circular-economy/index_en.htm

  78. Wang J et al (2019) Microplastics as contaminants in the soil environment: a mini-review. Sci Total Environ 691:848–857. https://doi.org/10.1016/j.scitotenv.2019.07.209

    Article  CAS  PubMed  Google Scholar 

  79. Elisante E, Muzuka ANN (2016) Assessment of sources and transformation of nitrate in groundwater on the slopes of Mount Meru, Tanzania. Environ Earth Sci 75(3):1–15. https://doi.org/10.1007/s12665-015-5015-1

    Article  CAS  Google Scholar 

  80. Guo H et al (2017) Characteristics of volatile compound emission and odor pollution from municipal solid waste treating/disposal facilities of a city in Eastern China. Environ Sci Pollut Res 24(22):18383–18391. https://doi.org/10.1007/s11356-017-9376-8

    Article  CAS  Google Scholar 

  81. Awasthi AK, Shivashankar M, Majumder S (2017) Plastic solid waste utilization technologies: a review. IOP Conf Ser Mater Sci Eng 263(2):022024. https://doi.org/10.1088/1757-899X/263/2/022024

    Article  Google Scholar 

  82. Garaleh M, Lahcini M, Kricheldorf HR, Weidner SM (2009) Syntheses of aliphatic polyesters catalyzed by lanthanide triflates. J Polym Sci Part A Polym Chem 47(1):170–177. https://doi.org/10.1002/pola.23136

    Article  CAS  Google Scholar 

  83. Prajapati SK, Jain A, Jain A, Jain S (2019) Biodegradable polymers and constructs: A novel approach in drug delivery. Eur Polym J 120:109191. https://doi.org/10.1016/j.eurpolymj.2019.08.018

    Article  CAS  Google Scholar 

  84. Mangaraj S, Yadav A, Bal LM, Dash SK, Mahanti NK (2019) Application of biodegradable polymers in food packaging industry: a comprehensive review. J Packag Technol Res 3(1):77–96. https://doi.org/10.1007/s41783-018-0049-y

    Article  Google Scholar 

  85. Lanzarini-Lopes M, Garcia-Segura S, Hristovski K, Westerhoff P (2017) Electrical energy per order and current efficiency for electrochemical oxidation of p-chlorobenzoic acid with boron-doped diamond anode. Chemosphere 188:304–311. https://doi.org/10.1016/j.chemosphere.2017.08.145

    Article  CAS  PubMed  Google Scholar 

  86. Timbart L, Tse MY, Pang SC, Babasola O, Amsden BG (2009) Low viscosity poly(trimethylene carbonate) for localized drug delivery: rheological properties and in vivo degradation. Macromol Biosci 9(8):786–794. https://doi.org/10.1002/mabi.200800318

    Article  CAS  PubMed  Google Scholar 

  87. Mok PS, Ch’ng DH, Ong SP, Numata K, Sudesh K (2016) Characterization of the depolymerizing activity of commercial lipases and detection of lipase-like activities in animal organ extracts using poly(3-hydroxybutyrate-co-4-hydroxybutyrate) thin film. AMB Express. https://doi.org/10.1186/s13568-016-0230-z

    Article  PubMed  PubMed Central  Google Scholar 

  88. Subach DJ (1997) Biodegradable polymers. Chemist. https://doi.org/10.1533/9780857097149.31

    Article  Google Scholar 

  89. Muroi F et al (2017) Characterization of a poly(butylene adipate-co-terephthalate) hydrolase from the aerobic mesophilic bacterium Bacillus pumilus. Polym Degrad Stab 137:11–22. https://doi.org/10.1016/j.polymdegradstab.2017.01.006

    Article  CAS  Google Scholar 

  90. Gunasekara AS, Truong T, Goh KS, Spurlock F, Tjeerdema RS (2007) Environmental fate and toxicology of fipronil. J Pestic Sci. https://doi.org/10.1584/jpestics.R07-02

    Article  Google Scholar 

  91. biodegradable plastic thesis - Google Search. https://www.google.com/search?sxsrf=ALeKk02gB4KKZiF765jjpJqx1e9yFJ-Ahw%3A1604649211018&ei=-wClX59PsfXGA7CAj-AH&q=biodegradable+plastic+thesis&oq=biodegradable+plastic+THES&gs_lcp=CgZwc3ktYWIQARgAMgkIABDJAxAWEB4yBggAEBYQHjIGCAAQFhAeMgYIABAWEB46BAgAEEc6CggAEMkDEBQQhwI6BwgAEBQQhwI6AggAOgUIABDJA1CmWliXYWCWc2gAcAJ4AIABqwKIAeUIkgEDMi00mAEAoAEBqgEHZ3dzLXdpesgBCMABAQ&sclient=psy-ab (accessed Nov. 06, 2020).

  92. Díaz A, Katsarava R, Puiggalí J (2014) Synthesis, properties and applications of biodegradable polymers derived from diols and dicarboxylic Acids: From Polyesters to poly(ester amide)s. Int J Mol Sci 15(5):7064–7123. https://doi.org/10.3390/ijms15057064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Vroman I, Tighzert L (2009) Biodegradable polymers. Materials. https://doi.org/10.3390/ma2020307

    Article  PubMed Central  Google Scholar 

  94. Morro A, Catalina F, Sanchez-León E, Abrusci C (2019) Photodegradation and biodegradation under Thermophile Conditions of mulching films based on Poly(Butylene Adipate-co-Terephthalate) and Its blend with Poly(Lactic Acid). J Polym Environ 27(2):352–363. https://doi.org/10.1007/s10924-018-1350-0

    Article  CAS  Google Scholar 

  95. Salimi H, Aryanasab F, Banazadeh AR, Shabanian M, Seidi F (2016) Designing syntheses of cellulose and starch derivatives with basic or cationic N-functions: part I-cellulose derivatives. Polym Adv Technol 27(1):5–32. https://doi.org/10.1002/pat.3599

    Article  CAS  Google Scholar 

  96. Chaves RP, Fechine GJM (2016) Thermo stabilisation of poly (butylene adipate-co-terephthalate). Polímeros 26(2):102–105. https://doi.org/10.1590/0104-1428.2196

    Article  CAS  Google Scholar 

  97. Li CT, Zhang M, Qin JX, Zhang Y, Qiu JH (2015) Study on molecular modeling and the difference of PC lipase-catalyzed degradation of poly (butylene succinate) copolymers modified by linear monomers. Polym Degrad Stab 116:75–80. https://doi.org/10.1016/j.polymdegradstab.2015.03.017

    Article  CAS  Google Scholar 

  98. Nakajima H, Dijkstra P, Loos K (2017) The recent developments in biobased polymers toward general and engineering applications: Polymers that are upgraded from biodegradable polymers, analogous to petroleum-derived polymers, and newly developed. Polymers (Basel) 9(10):1–26. https://doi.org/10.3390/polym9100523

    Article  CAS  Google Scholar 

  99. Mundargi RC et al (2007) Development and evaluation of novel biodegradable microspheres based on poly(d, l-lactide-co-glycolide) and poly(ε-caprolactone) for controlled delivery of doxycycline in the treatment of human periodontal pocket: In vitro and in vivo studies. J Control Release 119(1):59–68. https://doi.org/10.1016/j.jconrel.2007.01.008

    Article  CAS  PubMed  Google Scholar 

  100. Cosate de Andrade MF, Souza PMS, Cavalett O, Morales AR (2016) Life cycle assessment of Poly(Lactic Acid) (PLA): comparison between chemical recycling, mechanical recycling and composting. J Polym Environ 24(4):372–384. https://doi.org/10.1007/s10924-016-0787-2

    Article  CAS  Google Scholar 

  101. Bagheri AR, Laforsch C, Greiner A, Agarwal S (2017) Fate of So-Called biodegradable polymers in seawater and freshwater. Glob Challenges 1(4):1700048. https://doi.org/10.1002/gch2.201700048

    Article  Google Scholar 

  102. Pan Y, Farmahini-Farahani M, O’Hearn P, Xiao H, Ocampo H (2016) An overview of bio-based polymers for packaging materials. J Bioresour Bioprod 1(3):106–113

    Google Scholar 

  103. NPTEL, 2019 “MODULE – 5 MICROBIAL GROWTH AND CONTROL Lecture – 1 : Growth of bacterial cultures , growth curve and measurement of microbial growth,” Biotechnology, pp 1–48, [Online]. Available: https://nptel.ac.in/courses/102103015/pdf/mod5.pdf.

  104. Jia H, Zhang M, Weng Y, Zhao Y, Li C, Kanwal A (2021) Degradation of poly(butylene adipate-co-terephthalate) by Stenotrophomonas sp. YCJ1 isolated from farmland soil. J Environ Sci (China) 103:50–58. https://doi.org/10.1016/j.jes.2020.10.001

    Article  CAS  Google Scholar 

  105. Narancic T, O’Connor KE (2019) Plastic waste as a global challenge: Are biodegradable plastics the answer to the plastic waste problem? Microbiology 165(2):129–137. https://doi.org/10.1099/mic.0.000749

    Article  CAS  PubMed  Google Scholar 

  106. Shankar S, Rhim JW (2018) Preparation of antibacterial poly(lactide)/poly(butylene adipate-co-terephthalate) composite films incorporated with grapefruit seed extract. Int J Biol Macromol 120:846–852. https://doi.org/10.1016/j.ijbiomac.2018.09.004

    Article  CAS  PubMed  Google Scholar 

  107. Samantaray PK et al (2020) Poly(glycolic acid) (PGA): a versatile building block expanding high performance and sustainable bioplastic applications. Green Chemistry 22(13):4055–4081. https://doi.org/10.1039/d0gc01394c

    Article  CAS  Google Scholar 

  108. Ekholm M et al (2006) A histological and immunohistochemical study of tissue reactions to solid poly(ortho ester) in rabbits. Int J Oral Maxillofac Surg 35(7):631–635. https://doi.org/10.1016/j.ijom.2006.01.029

    Article  CAS  PubMed  Google Scholar 

  109. Sousa FM et al (2019) Rheological and thermal characterization of PCL/PBAT blends. Polym Bull 76(3):1573–1593. https://doi.org/10.1007/s00289-018-2428-5

    Article  CAS  Google Scholar 

  110. Xu T, Miszuk JM, Zhao Y, Sun H, Fong H (2015) Electrospun Polycaprolactone 3D Nanofibrous scaffold with interconnected and hierarchically structured pores for bone tissue engineering. Adv Healthc Mater 4(15):2238–2246. https://doi.org/10.1002/adhm.201500345

    Article  CAS  PubMed  Google Scholar 

  111. Zhao H, Serrano MC, Popowich DA, Kibbe MR, Ameer GA (2010) Biodegradable nitric oxide-releasing poly(diol citrate) elastomers. J Biomed Mater Res - Part A 93(1):356–363. https://doi.org/10.1002/jbm.a.32536

    Article  CAS  Google Scholar 

  112. Campo L, Bechtold P, Borsari L, Fustinoni S (2019) A systematic review on biomonitoring of individuals living near or working at solid waste incinerator plants. Cr Rev Toxicol 49(6):479–519. https://doi.org/10.1080/10408444.2019.1630362

    Article  CAS  Google Scholar 

  113. Izdebska J (2015) Aging and degradation of printed materials. Printing on polymers: fundamentals and applications. Elsevier Inc, Nertherlands, pp 353–370

    Google Scholar 

  114. Jambeck JR, Ji Q, Zhang Y-G, Liu D, Grossnickle DM, Luo Z-X (2015) Plastic waste inputs from land into the ocean. Science 347(6223):764–768. https://doi.org/10.1126/science.1260879

    Article  CAS  Google Scholar 

  115. Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo JE (2008) Polymer biodegradation: mechanisms and estimation techniques - a review. Chemosphere 73(4):429–442. https://doi.org/10.1016/j.chemosphere.2008.06.064

    Article  CAS  PubMed  Google Scholar 

  116. Leja K, Lewandowicz G (2010) Polymer biodegradation and biodegradable polymers - a review. Polish J Environ Stud 19:255–266

    Google Scholar 

  117. Pulikkalparambil H, Parameswaranpillai J, Jacob George J, Yorseng K, Siengchin S (2017) Physical and thermo-mechanical properties of bionano reinforced poly(butylene adipate-co-terephthalate), hemp/CNF/Ag-NPs composites. AIMS Mater Sci 4(3):814–831. https://doi.org/10.3934/matersci.2017.3.814

    Article  Google Scholar 

  118. Asghari F, Samiei M, Adibkia K, Akbarzadeh A, Davaran S (2017) Biodegradable and biocompatible polymers for tissue engineering application: a review. Artifi Cells Nanomed Biotech. https://doi.org/10.3109/21691401.2016.1146731

    Article  Google Scholar 

  119. Svoboda P, Dvorackova M, Svobodova D (2019) Influence of biodegradation on crystallization of poly (butylene adipate-co-terephthalate). Polym Adv Technol 30(3):552–562. https://doi.org/10.1002/pat.4491

    Article  CAS  Google Scholar 

  120. S. Zin, T. Tehnisk, K. Sekcija, and A. Tehnolo, Sekcija : RAŽOŠANAS TEHNOLOĢIJA Tēžu krājums

  121. “ล ี นอะด ิ เพท - โค - เทเรฟทาเลท สำหร ั บย ื ดอาย ุ การเก ็ บร ั กษาผลไม ้.”

  122. Ruggero F et al (2021) Degradation of film and rigid bioplastics during the thermophilic phase and the maturation phase of simulated composting. J Polym Environ 29(9):3015–3028. https://doi.org/10.1007/s10924-021-02098-2

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhang.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanwal, A., Zhang, M., Sharaf, F. et al. Polymer pollution and its solutions with special emphasis on Poly (butylene adipate terephthalate (PBAT)). Polym. Bull. 79, 9303–9330 (2022). https://doi.org/10.1007/s00289-021-04065-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-04065-2

Keywords

Navigation